Skip to main content

Advertisement

Log in

Sparsity Enhancement for Sparse Channel Estimation Using Non-orthogonal Basis

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Compressed sensing framework can be employed to improve channel estimation and enhance spectral and/or energy efficiency for communication systems. To take advantage of compressed sensing, special basis are required to model a multipath fading channel with sparse channel coefficients. To apply compressed sensing method a set of orthogonal basis are required, where the coefficients meet the sparsity criteria. However, the orthogonality condition for the basis may be a limiting factor to improve the sparsity of the channel coefficients. In this paper we relax the orthogonality condition and use a dictionary learning algorithm such as K-SVD to find a set of new basis with sparse coefficients. Using this method results in a channel model with improved sparsity and better MSE performance for channel estimation. An OFDM system is considered over a sparse doubly-selective channel and the proposed method is investigated through simulation. The simulation results show that the enhanced channel sparsity achieved based on the proposed method, leads to improved channel estimation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bajwa, W., Haupt, J., Sayeed, A., & Nowak, R. (2010). Compressed channel sensing: A new approach to estimating sparse multipath channels. Proceedings of the IEEE, 98(6), 1058–1076.

    Article  Google Scholar 

  2. Taubock, G., Hlawatsch, F., Eiwen, D., & Rauhut, H. (2010). Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and sparsity-enhancing processing. IEEE Journal Selected Topics in Signal Processing, 4(2), 255–271.

    Article  Google Scholar 

  3. Li, W., & Preisig, J. (2007). Estimation of rapidly time-varying sparse channels. IEEE Journal of Oceanic Engineering, 32(4), 927–939.

    Article  Google Scholar 

  4. Sharp, M., & Scaglione, A. (2008). Application of sparse signal recovery to pilot-assisted channel estimation. In IEEE international conference acoustics, speech and signal processing (ICASSP) (pp. 3469–3472).

  5. Senol, H. (2015). Joint channel estimation and symbol detection for OFDM systems in rapidly time-varying sparse multipath channels. Wireless Personal Communications, 82(3), 1161–1178.

    Article  Google Scholar 

  6. Cheng, P., Chen, Z., Rui, Y., Guo, Y. J., Gui, L., Tao, M., et al. (2013). Channel estimation for ofdm systems over doubly selective channels: A distributed compressive sensing based approach. IEEE Transactions on Communications, 61(10), 4173–4185.

    Article  Google Scholar 

  7. Qin, Q., Gui, L., Gong, B., Ren, X., & Chen, W. (2016). Structured distributed compressive channel estimation over doubly selective channels. IEEE Transactions on Broadcasting, 62(3), 521–531.

    Article  Google Scholar 

  8. Qi, C., Yue, G., Wu, L., Huang, Y., & Nallanathan, A. (2015). Pilot design schemes for sparse channel estimation in OFDM systems. IEEE Transactions on Vehicular Technology, 64(4), 1493–1505.

    Article  Google Scholar 

  9. Khosravi, M., & Mashhadi, S. (2015). Joint pilot power and pattern design for compressive OFDM channel estimation. IEEE Communications Letters, 19(1), 50–53.

    Article  Google Scholar 

  10. Mohammadian, R., Amini, A., & Khalaj, B. H. (2016). Deterministic pilot design for sparse channel estimation in MISO/multi-user OFDM systems. IEEE Transactions on Wireless Communications.

  11. Masoumian, S. H. S., & Tazehkand, B. M. (2015). Greedy deterministic pilot pattern algorithms for OFDM sparse channel estimation. Wireless Personal Communications, 84(2), 1119–1132.

    Article  Google Scholar 

  12. Scaglione, A., & Li, X. (2011). Compressed channel sensing: Is the restricted isometry property the right metric? In 17th international conference digital signal processing (DSP) (pp. 1–8).

  13. Sharp, M., & Scaglione, A. (2011). A useful performance metric for compressed channel sensing. IEEE Transactions on Signal Processing, 59(6), 2982–2988.

    Article  MathSciNet  Google Scholar 

  14. Zhou, F., Tan, J., Fan, X., & Zhang, L. (2014). A novel method for sparse channel estimation using super-resolution dictionary. EURASIP Journal Advances in Signal Processing. doi:10.1109/TSP.2007.893198.

    Google Scholar 

  15. Slepian, D. (1978). Prolate spheroidal wave functions, fourier analysis, and uncertainty—V: The discrete case. Bell System Technical Journal, 57(5), 1371–1430.

    Article  MATH  Google Scholar 

  16. Eldar, Y., & Kutyniok, G. (2012). Compressed sensing: Theory and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  17. Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.

    Article  Google Scholar 

  18. Leus, G., Tang, Z., & Banelli, P. (2011). Estimation of time-varying channels – a block approach. In F. Hlawatsch & G. Matz (Eds.), Wireless communications over rapidly time-varying channels (pp. 155–197). Oxford: Academic Press.

    Chapter  Google Scholar 

  19. Rubinstein, R., Bruckstein, A., & Elad, M. (2010). Dictionaries for sparse representation modeling. Proceedings of the IEEE, 98(6), 1045–1057.

    Article  Google Scholar 

  20. Candès, E. J., Eldar, Y. C., Needell, D., & Randall, P. (2011). Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1), 59–73.

    Article  MathSciNet  MATH  Google Scholar 

  21. Tropp, J., & Wright, S. (2010). Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE, 6, 948–958.

    Article  Google Scholar 

  22. Tang, Z., Cannizzaro, R., Leus, G., & Banelli, P. (2007). Pilot-assisted time-varying channel estimation for OFDM systems. IEEE Transactions on Signal Processing, 55(5), 2226–2238.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Mahmoodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, S., Omidi, M.J., Mehbodniya, A. et al. Sparsity Enhancement for Sparse Channel Estimation Using Non-orthogonal Basis. Wireless Pers Commun 95, 1759–1779 (2017). https://doi.org/10.1007/s11277-016-3917-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3917-1

Keywords

Navigation