Skip to main content
Log in

A Novel Low-Complex Antenna Selection Scheme for Beyond 4G (B4G) Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multi input multi output (MIMO) based transmission modes are very popular in 4G and beyond wireless standards. It offers high quality services at the cost of increased hardware and signal processing complexity. Antenna selection is one of the suitable solutions to overcome the limitations of MIMO scheme. Antenna selection schemes are becoming very popular in the recent wireless techniques like massive MIMO, cognitive radio, multi-hop relay networks (MHR) and wireless local area networks. Instead of using all the available antennas for transmission and reception, antenna selection schemes select good antennas based on the channel state information (CSI). To attain the full benefits of transmitter and joint antenna selection schemes, accurate CSI is required at the transmitter side. The non-zero feedback delay and time varying channel conditions, make the CSI available at the transmitter outdated, which also affects the antenna selection process. In this work, we have derived the closed form average symbol error rate (SER) expression of M-ary phase shift keying (PSK) modulation, for three different antenna selection schemes, by considering the effect of delayed CSI. All these derived expressions are the function of correlation between CSI at the receiver and delayed CSI at the transmitter. The simulation results show that the antenna selection gain decreases with the decrease in correlation. It is also observed that scheme 1 based antenna selection is optimal under delayed CSI conditions, for different constellations and more suited for future wireless standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cho, Y. S., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with MATLAB. New York: Wiley.

    Book  Google Scholar 

  2. Akyildiz, I. F., Gutierrez-Estevez, D. M., Balakrishnan, R., & Chavarria-Reyes, E. (2014). LTE-advanced and the evolution to beyond 4G (B4G) systems. Physical Communication, 10, 31–60.

    Article  Google Scholar 

  3. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (3GPP TS 36.213 version 8.4.0 Release 8), 2008.

  4. LTE; Feasibility study for Further Advancements for E-UTRA (LTE-Advanced), (3GPP TR 36.912 version 10.0.0 Release 10), 2011.

  5. Sesia, S., Toufik, I., & Baker, M. (2009). LTE—The UMTS long term evolution from theory to practice. West Sussex: Wiley.

    Book  Google Scholar 

  6. Hu, B. B., Liu, Y. A., Gang, X. I. E., Gao, J. C., & Yang, Y. L. (2014). Energy efficiency of massive MIMO wireless communication systems with antenna selection. The Journal of China Universities of Posts and Telecommunications, 21(6), 1–8.

    Article  Google Scholar 

  7. Yuksel, M., & Erkip, E. (2007). Multiple-antenna cooperative wireless systems: A diversity–multiplexing tradeoff perspective. IEEE Transactions on Information Theory, 53(10), 3371–3393.

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan, Y., & Thompson, J. (2007). MIMO configurations for relay channels: Theory and practice. IEEE Transactions on Wireless Communications, 6(5), 1774–1786.

    Article  Google Scholar 

  9. Muñoz-Medina, O., Vidal, J., & Agustín, A. (2007). Linear transceiver design in nonregenerative relays with channel state information. IEEE Transactions on Signal Processing, 55(6), 2593–2604.

    Article  MathSciNet  Google Scholar 

  10. Tang, X., & Hua, Y. (2007). Optimal design of non-regenerative MIMO wireless relays. IEEE Transactions on Wireless Communications, 6(4), 1398–1407.

    Article  MathSciNet  Google Scholar 

  11. Osseiran, A., Hardouin, E., Gouraud, A., Boldi, M., Cosovic, I., Gosse, K., et al. (2009). The road to IMT-advanced communication systems: State-of-the-art and innovation areas addressed by the WINNER + project. IEEE Communications Magazine, 47(6), 38–47.

    Article  Google Scholar 

  12. Torabi, M. (2008). Antenna selection for MIMO-OFDM systems. Signal Processing, 88(10), 2431–2441.

    Article  MATH  Google Scholar 

  13. Nagaraj, S., & Xiao, J. (2010). Best antenna selection for coded SIMO–OFDM. Signal Processing, 90(1), 391–394.

    Article  Google Scholar 

  14. Naeem, M., & Lee, D. C. (2011). Low-complexity joint transmit and receive antenna selection for MIMO systems. Engineering Applications of Artificial Intelligence, 24(6), 1046–1051.

    Article  Google Scholar 

  15. Lu, H. Y. (2012). Particle swarm optimization assisted joint transmit/receive antenna combining for multiple relays in cooperative MIMO systems. Applied Soft Computing, 12(7), 1865–1874.

    Article  Google Scholar 

  16. Katiyar, H., & Bhattacharjee, R. (2012). On the performance of decode-and-forward relaying with multi-antenna destination. AEU-International Journal of Electronics and Communications, 66(1), 1–6.

    Article  Google Scholar 

  17. Gorokhov, A., Gore, D., & Paulraj, A. J. (2003). Receive antenna selection for MIMO spatial multiplexing: Theory and algorithms. IEEE Transactions on Signal Processing, 51(11), 2796–2807.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gore, D., & Paulraj, A. J. (2002). MIMO antenna subset selection with space-time coding. IEEE Transactions on Signal Processing, 50(10), 2580–2588.

    Article  Google Scholar 

  19. Lu, H. Y., & Fang, W. H. (2007). Joint transmit/receive antenna selection in MIMO systems based on the priority-based genetic algorithm. IEEE Antennas and Wireless Propagation Letters, 6, 588–591.

    Article  Google Scholar 

  20. Sanayei, S., & Nosratinia, A. (2007). Capacity of MIMO channels with antenna selection. IEEE Transactions on Information Theory, 53(11), 4356–4362.

    Article  MathSciNet  MATH  Google Scholar 

  21. Gharavi-Alkhansari, M., & Gershman, A. B. (2004). Fast antenna subset selection in MIMO systems. IEEE Transactions on Signal Processing, 52(2), 339–347.

    Article  MathSciNet  Google Scholar 

  22. Molisch, A. F., Win, M. Z., Choi, Y. S., & Winters, J. H. (2005). Capacity of MIMO systems with antenna selection. IEEE Transactions on Wireless Communications, 4(4), 1759–1772.

    Article  Google Scholar 

  23. Chen, Z., Collings, I. B., Zhou, Z., & Vucetic, B. (2009). Transmit antenna selection schemes with reduced feedback rate. IEEE Transactions on Wireless Communications, 8(2), 1006–1016.

    Article  Google Scholar 

  24. Choi, Y. S., Molisch, A. F., Win, M. Z., & Winters, J. H. (2003). Fast algorithms for antenna selection in MIMO systems. In Vehicular technology conference, VTC 2003-Fall. (Vol. 3, pp. 1733–1737).

  25. You, C., Hwang, I., Kim, Y., & Tarokh, V. (2009). Dual antenna selection algorithms and feedback strategies with reduced complexity for multiple-input multiple-output systems. Microwaves, Antennas and Propagation, IET, 3(6), 906–916.

    Article  Google Scholar 

  26. Chen, Z., Yuan, J., Vucetic, B., & Zhou, Z. (2003). Performance of Alamouti scheme with transmit antenna selection. Electronics Letters, 39(23), 1666–1668.

    Article  Google Scholar 

  27. Chen, Z., Vucetic, B., & Yuan, J. (2003). Space-time trellis codes with transmit antenna selection. Electronics Letters, 39(11), 854–855.

    Article  Google Scholar 

  28. Badic, B., Fuxjäger, P., & Weinrichter, H. (2004). Performance of quasi-orthogonal space-time code with antenna selection. Electronics Letters, 40(20), 1282–1284.

    Article  Google Scholar 

  29. Fan, B., Sun, W., & Shen, D. (2006). Performance analysis of orthogonal space-time block coding with reduced-complexity antenna selection. In Wireless, mobile and multimedia networks, 2006 IET international conference (pp. 1–4).

  30. Gorokhov, A. (2002). Antenna selection algorithms for MEA transmission systems. In IEEE international conference acoustics, speech, and signal processing (ICASSP) (Vol. 3, pp. 2857–2860).

  31. Zhang, H., Molisch, A. F., & Zhang, J. (2006). Applying antenna selection in WLANs for achieving broadband multimedia communications. IEEE Transactions on Broadcasting, 52(4), 475–482.

    Article  Google Scholar 

  32. Lee, D., Nooshabadi, S., & Kim, K. (2010). Dual-mode SM/STBC system with antenna subset selection employing ML detection. AEU-International Journal of Electronics and Communications, 64(12), 1128–1136.

    Article  Google Scholar 

  33. Lee, D., Nooshabadi, S., & Kim, K. (2012). Joint antenna subset selection for spatial multiplexing systems based on statistical and instantaneous selection criteria. AEU-International Journal of Electronics and Communications, 66(9), 715–720.

    Article  Google Scholar 

  34. Jensen, M., & Morris, M. L. (2005). Efficient capacity-based antenna selection for MIMO systems. IEEE Transactions on Vehicular Technology, 54(1), 110–116.

    Article  Google Scholar 

  35. Lei, C. A. O., Yang, H. W., Zhang, X., & Yang, D. C. (2009). Diversity order of decode-and-forward MIMO relaying with transmit antenna selection. The Journal of China Universities of Posts and Telecommunications, 16(5), 1–7.

    Article  Google Scholar 

  36. Bletsas, A., Shin, H., & Win, M. Z. (2007). Cooperative communications with outage-optimal opportunistic relaying. IEEE Transactions on Wireless Communications, 6(9), 3450–3460.

    Article  Google Scholar 

  37. Ding, Z., Gong, Y., Ratnarajah, T., & Cowan, C. F. (2008). On the performance of opportunistic cooperative wireless networks. IEEE Transactions on Communications, 56(8), 1236–1240.

    Article  Google Scholar 

  38. Sandhu, S., Nabar, R. U., Gore, D., & Paulraj, A. (2000). Near-optimal selection of transmit antennas for a MIMO channel based on Shannon capacity. In Signals, systems and computers, 2000. Conference record of the thirty-fourth asilomar conference (Vol. 1, pp. 567–571).

  39. Yu, X. B., Yin, X., Liu, X. S., & Xu, D. Z. (2012). Performance of variable-power adaptive MQAM with transmit antenna selection and delayed feedback in Nakagami Fading channel. AEU-International Journal of Electronics and Communications, 66(4), 340–348.

    Article  Google Scholar 

  40. Trivedi, Y. N., & Chaturvedi, A. K. (2011). Performance analysis of multiple input single output systems using transmit beamforming and antenna selection with delayed channel state information at the transmitter. Communications, IET, 5(6), 827–834.

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, X. J., Gong, Y., & Letaief, K. (2010). On the diversity gain in cooperative relaying channels with imperfect CSIT. IEEE Transactions on Communications, 58(4), 1273–1279.

    Article  Google Scholar 

  42. Trivedi, Y. N. (2013). Performance analysis of OFDM system with transmit antenna selection using delayed feedback. AEU-International Journal of Electronics and Communications, 67(8), 671–675.

    Article  Google Scholar 

  43. Eng, T., Kong, N., & Milstein, L. B. (1996). Comparison of diversity combining techniques for Rayleigh-fading channels. IEEE Transactions on Communications, 44(9), 1117–1129.

    Article  Google Scholar 

  44. Chen, C. Y., Sezgin, A., Cioffi, J. M., & Paulraj, A. (2008). Antenna selection in space-time block coded systems: performance analysis and low-complexity algorithm. IEEE Transactions on Signal Processing, 56(7), 3303–3314.

    Article  MathSciNet  Google Scholar 

  45. Simon, M. K., & Alouini, M. S. (2000). Digital communication over fading channels. A unified approach to performance analysis. New York: Wiley.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arthi.

Appendices

Appendix 1

The average SER for an M-ary PSK modulation scheme is given by

$$P_{e} = \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)p_{\beta } \left( \beta \right)d\beta }$$
(15)

where Q(.) is the Gaussian Q-function which is given by

$$Q(x) = \frac{1}{\pi }\int\limits_{0}^{{\left( {M - 1} \right)\pi /M}} {e^{{\left( {\frac{{ - x^{2} }}{{2\sin^{2} \theta }}} \right)}} } d\theta$$
(16)

Substituting (16) in (15),

$$\begin{aligned} P_{e} & = \int\limits_{0}^{\infty } {\frac{1}{\pi }\int\limits_{0}^{{\left( {M - 1} \right)\pi /M}} {e^{{\left( {\frac{{ - b^{2} \beta }}{{2\sin^{2} \theta }}} \right)}} } } d\theta \,p_{\beta } \left( \beta \right)\,d\beta \\ P_{e} & = \frac{1}{\pi }\int\limits_{0}^{{\left( {M - 1} \right)\pi /M}} {\left[ {\int\limits_{0}^{\infty } {e^{{^{{\left( {\frac{{ - b^{2} \beta }}{{2\sin^{2} \theta }}} \right)}} }} } p_{\beta } \left( \beta \right)d\beta } \right]} d\theta \\ \end{aligned}$$
(17)

where b is a modulation constant which depends on the specific modulation and detection combination. For M-ary PSK, b is given by,

$$b^{2} = 2\sin^{2} \frac{\pi }{M}$$
(18)

For Rayleigh fading channel, the probability density function (pdf) of instantaneous SNR is of the form [45]

$$p_{\beta } \left( \beta \right) = \frac{1}{{\bar{\beta }}}e^{{\left( { - \frac{\beta }{{\bar{\beta }}}} \right)}} ,\beta \ge 0$$
(19)

where \(\bar{\beta }\) is the average SNR which is given by

$$\bar{\beta } = \frac{{E_{s} }}{{N_{0} }}$$
(20)

Substituting (19) in (17) and simplifying gives the average SER of M-ary PSK modulation over a Rayleigh fading channel which is given by [45]

$$P_{e} = \left[ {\frac{M - 1}{M}\left\{ {1 - \sqrt {\frac{{b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)/2}}{{1 + b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)/2}}} \frac{M}{{\left( {M - 1} \right)\pi }}\left[ {\frac{\pi }{2} + \tan^{ - 1} \left( {\sqrt {\frac{{b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)/2}}{{1 + b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)/2}}\cot \frac{\pi }{M}} } \right)} \right]} \right\}} \right]$$
(21)

For Nakagami-m fading channel, the pdf of instantaneous SNR is of the form [45]

$$p_{\beta } \left( \beta \right) = \frac{{m^{m} \beta^{m - 1} }}{{\bar{\beta }^{m} \varGamma (m)}}e^{{\left( { - \frac{m\beta }{{\bar{\beta }}}} \right)}} ,\beta \ge 0$$
(22)

where m is the Nakagami-m fading factor which ranges from ½ to \(\infty\) and Γ(•) is the Gamma function. Substituting (22) in (17) gives the average SER of M-ary PSK modulation over a Nakagami-m fading channel which is given by [45]

$$P_{e} = \left[ {\frac{M - 1}{M} - \frac{1}{\pi }\sqrt {\frac{{b^{2} \bar{\beta }/2m}}{{1 + (b^{2} \bar{\beta }/2m)}}} \left\{ \begin{aligned} \left( {\frac{\pi }{2} + \tan^{ - 1} \alpha } \right)\sum\limits_{g = 0}^{m - 1} {\left( \begin{aligned} 2g \hfill \\ \,g \hfill \\ \end{aligned} \right)\frac{1}{{\left[ {4\left( {1 + b^{2} \bar{\beta }/2m} \right)} \right]^{g} }}} \hfill \\ \quad +\sin (\tan^{ - 1} \alpha )\sum\limits_{g = 1}^{m - 1} {\sum\limits_{i = 1}^{g} {\frac{{T_{ig} }}{{\left( {1 + b^{2} \bar{\beta }/2m} \right)^{g} }}} \left[ {\cos \left( {\tan^{ - 1} \alpha } \right)} \right]^{2(g - i) + 1} } \hfill \\ \end{aligned} \right\}} \right]$$
(23)

where

$$\alpha\,\triangleq\,\sqrt {\frac{{b^{2} \bar{\beta }/2m}}{{1 + b^{2} \bar{\beta }/2m}}} \cot \frac{\pi }{M}$$
(24)
$$T_{ig} \,\triangleq\, \frac{{\left( \begin{aligned} 2g \hfill \\ \,g \hfill \\ \end{aligned} \right)}}{{\left( \begin{aligned} 2(g - i) \hfill \\ \,\,\,\,g - i \hfill \\ \end{aligned} \right)4^{i} \left[ {2\left( {g - i} \right) + 1} \right]}}$$
(25)

Appendix 2

2.1 Scheme 1

The pdf of instantaneous SNR for the antenna selection scheme 1 is given by [40]

$$p_{\beta } \left( \beta \right) = \frac{{N\left( {N - 1} \right)}}{{\frac{{2\;E_{s} }}{{N_{0} }}}}\left[ \begin{aligned} 2\;\sum\limits_{g = 1}^{N - 2} {\left( \begin{aligned} N - 2 \hfill \\ \;\;\;g \hfill \\ \end{aligned} \right)} \;\frac{{\left( { - 1} \right)^{g} }}{g}\left\{ {e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}}} - \frac{2}{{2 + g - g\rho^{2} }}\;e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}\;\frac{{\left( {g + 2} \right)}}{{(g + 2 - g\rho^{2} )}}}} } \right\} \hfill \\ \quad +\left( {1 - \rho^{2} + \frac{{\rho^{2} \beta }}{{\frac{{E_{s} }}{{N_{0} }}}}} \right)\;e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}}} \hfill \\ \end{aligned} \right]$$
(26)

Substituting \(p_{\beta } \left( \beta \right)\) in (15)

$$P_{e} = \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\frac{{N\left( {N - 1} \right)}}{{\frac{{2\;E_{s} }}{{N_{0} }}}}\left[ \begin{aligned} 2\;\sum\limits_{g = 1}^{N - 2} {\left( \begin{aligned} N - 2 \hfill \\ \;\;\;g \hfill \\ \end{aligned} \right)} \;\frac{{\left( { - 1} \right)^{g} }}{g}\left\{ {e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}}} - \frac{2}{{2 + g - g\rho^{2} }}\;e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}\;\frac{{\left( {g + 2} \right)}}{{(g + 2 - g\rho^{2} )}}}} } \right\} \hfill \\ \quad +\left( {1 - \rho^{2} + \frac{{\rho^{2} \beta }}{{\frac{{E_{s} }}{{N_{0} }}}}} \right)\;e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}}} \hfill \\ \end{aligned} \right]} d\beta$$
(27)

On splitting the integral in (27) into 4 parts,

$$P_{e} = P_{1} - P_{2} + P_{3} + P_{4}$$
(28)

where

$$P_{1} = \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\left( {\frac{{N\left( {N - 1} \right)}}{{\frac{{2\;E_{s} }}{{N_{0} }}}}2\;\sum\limits_{g = 1}^{N - 2} {\left( \begin{aligned} N - 2 \hfill \\ g \hfill \\ \end{aligned} \right)} \;\frac{{\left( { - 1} \right)^{g} }}{g}e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}}} } \right)} d\beta$$
(29)
$$P_{2} = \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\left( {\frac{{N\left( {N - 1} \right)}}{{\frac{{2\;E_{s} }}{{N_{0} }}}}2\;\sum\limits_{g = 1}^{N - 2} {\left( \begin{aligned} N - 2 \hfill \\ g \hfill \\ \end{aligned} \right)} \;\frac{{\left( { - 1} \right)^{g} }}{g}\frac{2}{{2 + g - g\rho^{2} }}\;e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}\;\frac{{\left( {g + 2} \right)}}{{g + 2 - g\rho^{2} }}}} } \right)} d\beta$$
(30)
$$P_{3} = \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\frac{{N\left( {N - 1} \right)}}{{\frac{{2\;E_{s} }}{{N_{0} }}}}\left( {1 - \rho^{2} } \right)e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}}} } d\beta$$
(31)
$$P_{4} = \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\frac{{N\left( {N - 1} \right)}}{{\frac{{2\;E_{s} }}{{N_{0} }}}}\frac{{\rho^{2} \beta }}{{\frac{{E_{s} }}{{N_{0} }}}}e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}}} } d\beta$$
(32)

Considering P1 in (29),

$$P_{1} = N\left( {N - 1} \right)\sum\limits_{g = 1}^{N - 2} {\left( \begin{aligned} N - 2 \hfill \\ g \hfill \\ \end{aligned} \right)} \;\frac{{\left( { - 1} \right)^{g} }}{g}\int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\frac{1}{{\frac{{E_{s} }}{{N_{0} }}}}e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}}} } d\beta$$
(33)

Rewriting (33) similar to (19) and comparing with (21) gives

$$P_{1} = N\left( {N - 1} \right)\sum\limits_{g = 1}^{N - 2} {\left( \begin{aligned} N - 2 \hfill \\ g \hfill \\ \end{aligned} \right)} \;\frac{{\left( { - 1} \right)^{g} }}{g}\left[ {\frac{M - 1}{M}\left\{ \begin{aligned} 1 - \sqrt {\frac{{b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)/2}}{{1 + b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)/2}}} \frac{M}{{\left( {M - 1} \right)\pi }} \hfill \\ \left[ {\frac{\pi }{2} + \tan^{ - 1} \left( {\sqrt {\frac{{b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)/2}}{{1 + b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)/2}}\cot \frac{\pi }{M}} } \right)} \right] \hfill \\ \end{aligned} \right\}} \right]$$
(34)

Considering P2 in (30),

$$P_{2} = N\left( {N - 1} \right)\sum\limits_{g = 1}^{N - 2} {\left( \begin{aligned} N - 2 \hfill \\ g \hfill \\ \end{aligned} \right)} \;\frac{{\left( { - 1} \right)^{g} 2}}{g(g + 2)}\int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\frac{{\left( {g + 2} \right)}}{{\left( {g + 2 - g\rho^{2} } \right)\frac{{E_{s} }}{{N_{0} }}}}} \;e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}\;\frac{{\left( {g + 2} \right)}}{{(g + 2 - g\rho^{2} )}}}} d\beta$$
(35)

Rewriting (35) similar to (19) and comparing with (21) gives

$$P_{2} = N\left( {N - 1} \right)\sum\limits_{g = 1}^{N - 2} {\left( \begin{aligned} N - 2 \hfill \\ g \hfill \\ \end{aligned} \right)} \;\frac{{\left( { - 1} \right)^{g} 2}}{g(g + 2)}\left[ {\frac{M - 1}{M}\left\{ \begin{aligned} 1 - \sqrt {\frac{{b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)\left( {g + 2 - g\rho^{2} } \right)}}{{2(g + 2) + b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)(g + 2 - g\rho^{2} )}}} \frac{M}{{\left( {M - 1} \right)\pi }} \hfill \\ \left[ {\frac{\pi }{2} + \tan^{ - 1} \left( {\sqrt {\frac{{b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)\left( {g + 2 - g\rho^{2} } \right)}}{{2(g + 2) + b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)(g + 2 - g\rho^{2} )}}} \cot \frac{\pi }{M}} \right)} \right] \hfill \\ \end{aligned} \right\}} \right]$$
(36)

Considering P3 in (31),

$$P_{3} = \frac{N(N - 1)}{2}\left( {1 - \rho^{2} } \right)\int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\frac{1}{{\frac{{E_{s} }}{{N_{0} }}}}} \;e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}}} d\beta$$
(37)

Rewriting (37) similar to (19) and comparing with (21) gives

$$P_{3} = \frac{N(N - 1)}{2}\left( {1 - \rho^{2} } \right)\left\{ {\frac{M - 1}{M}\left[ \begin{aligned} 1 - \sqrt {\frac{{b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}{{2 + b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}} \frac{M}{{\left( {M - 1} \right)\pi }} \hfill \\ \left\{ {\frac{\pi }{2} + \tan^{ - 1} \left( {\sqrt {\frac{{b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}{{1 + b^{2} \left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}} \cot \frac{\pi }{M}} \right)} \right\} \hfill \\ \end{aligned} \right]} \right\}$$
(38)

Considering P4 in (32),

$$P_{4} = \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\frac{{N\left( {N - 1} \right)}}{{\frac{{2\;E_{s} }}{{N_{0} }}}}\frac{{\rho^{2} \beta }}{{\frac{{E_{s} }}{{N_{0} }}}}e^{{\frac{ - \beta }{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}}} } d\beta$$
(39)

Rewriting (39) similar to (22) and comparing with (23) gives

$$P_{4} = \frac{N(N - 1)}{2}\rho^{2} \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\frac{4\beta }{{\left[ {\frac{{2E_{s} }}{{N_{0} }}} \right]^{2} \varGamma (2)}}e^{{\frac{ - 2\beta }{{\left( {\frac{{2E_{s} }}{{N_{0} }}} \right)}}}} d\beta } ,\quad m = 2$$
(40)

Substituting (34), (36), (38) and (40) in (28) gives average SER expression of M-ary PSK modulation [i.e. (4)] for the antenna selection scheme 1.

2.2 Scheme 2

The pdf of instantaneous SNR for the antenna selection scheme 2 is given by [40]

$$\begin{aligned} p_{\beta } \left( \beta \right) &= \frac{{N_{1} N_{2} }}{{\frac{{E_{s} }}{{N_{0} }}}}\sum\limits_{r = 0}^{R - 1} {\frac{{\left( \begin{array}{c} N_{1} - 1 \hfill \\ r \hfill \\ \end{array} \right)\left( \begin{array}{c} N_{2} - 1 \hfill \\ r \hfill \\ \end{array} \right)}}{{\left( {1 + r - r\rho^{2} } \right)^{2} }}} \left\{ {1 - \rho^{2} + \frac{{\beta \rho^{2} }}{{\left( {1 + r - r\rho^{2} } \right)\frac{{E_{s} }}{{N_{0} }}}}} \right\}e^{{\frac{ - \beta (1 + r)}{{\frac{{E_{s} }}{{N_{0} }}\left( {1 + r - r\rho^{2} } \right)^{2} }}}} \hfill \\ &\quad +\frac{{N_{1} N_{2} }}{{\frac{{E_{s} }}{{N_{0} }}}}\sum\limits_{n = 0}^{{N_{1} - 1}} {\sum\limits_{\begin{subarray}{l} m = 0 \\ m \ne n \end{subarray} }^{{N_{2} - 1}} {\frac{{\left( \begin{array}{c} N_{1} - 1 \hfill \\ n \hfill \\ \end{array} \right)\left( \begin{array}{c} N_{2} - 1 \hfill \\ m \hfill \\ \end{array} \right)\left( { - 1} \right)^{m + n} }}{n - m}} } \hfill \\ &\quad \left\{ {\frac{{e^{{\frac{ - \beta (1 + m)}{{\frac{{E_{s} }}{{N_{0} }}\left( {1 + m - m\rho^{2} } \right)}}}} }}{{1 + m - m\rho^{2} }} - \frac{{e^{{\frac{ - \beta (1 + n)}{{\frac{{E_{s} }}{{N_{0} }}\left( {1 + n - n\rho^{2} } \right)}}}} }}{{1 + n - n\rho^{2} }}} \right\},\beta \ge 0 \hfill \\ \end{aligned}$$
(41)
$$P_{e} = \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\left[ \begin{aligned} \frac{{N_{1} N_{2} }}{{\frac{{E_{s} }}{{N_{0} }}}}\sum\limits_{r = 0}^{R - 1} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)}}{{(1 + r - r\rho^{2} )^{2} }}} \left\{ {1 - \rho^{2} + \frac{{\beta \rho^{2} }}{{(1 + r - r\rho^{2} )\frac{{E_{s} }}{{N_{0} }}}}} \right\}e^{{\frac{ - \beta (1 + r)}{{\frac{{E_{s} }}{{N_{0} }}(1 + r - r\rho^{2} )}}}} + \hfill \\ \frac{{N_{1} N_{2} }}{{\frac{{E_{s} }}{{N_{0} }}}}\sum\limits_{n = 0}^{{N_{1} - 1}} {\sum\limits_{\begin{subarray}{l} m = 0 \\ m \ne n \end{subarray} }^{{N_{2} - 1}} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ n \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)( - 1)^{m + n} }}{n - m}} } \left\{ {\frac{{e^{{\frac{ - \beta (1 + m)}{{\frac{{E_{s} }}{{N_{0} }}(1 + m - m\rho^{2} )}}}} }}{{(1 + m - m\rho^{2} )}} - \frac{{e^{{\frac{ - \beta (1 + n)}{{\frac{{E_{s} }}{{N_{0} }}(1 + n - n\rho^{2} )}}}} }}{{(1 + n - n\rho^{2} )}}} \right\} \hfill \\ \end{aligned} \right]} d\beta$$
(42)

(42) is obtained by substituting (41) in (15). On splitting the integral in (42) into 4 parts

$$P_{e} = P_{1} + P_{2} + P_{3} - P_{4}$$
(43)

where

$$P_{1} = \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\frac{{N_{1} N_{2} }}{{\frac{{E_{s} }}{{N_{0} }}}}\sum\limits_{r = 0}^{R - 1} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)}}{{(1 + r - r\rho^{2} )^{2} }}} \left( {1 - \rho^{2} } \right)} e^{{\frac{ - \beta (1 + r)}{{\frac{{E_{s} }}{{N_{0} }}(1 + r - r\rho^{2} )}}}} d\beta$$
(44)
$$P_{2} = \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\frac{{N_{1} N_{2} }}{{\frac{{E_{s} }}{{N_{0} }}}}\sum\limits_{r = 0}^{R - 1} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)}}{{(1 + r - r\rho^{2} )^{2} }}} \frac{{\beta \rho^{2} }}{{(1 + r - r\rho^{2} )\frac{{E_{s} }}{{N_{0} }}}}} e^{{\frac{ - \beta (1 + r)}{{\frac{{E_{s} }}{{N_{0} }}(1 + r - r\rho^{2} )}}}} d\beta$$
(45)
$$P_{3} = \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\frac{{N_{1} N_{2} }}{{\frac{{E_{s} }}{{N_{0} }}}}\sum\limits_{n = 0}^{{N_{1} - 1}} {\sum\limits_{\begin{subarray}{l} m = 0 \\ m \ne n \end{subarray} }^{{N_{2} - 1}} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ n \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)( - 1)^{m + n} }}{n - m}} } } \frac{{e^{{\frac{ - \beta (1 + m)}{{\frac{{E_{s} }}{{N_{0} }}(1 + m - m\rho^{2} )}}}} }}{{(1 + m - m\rho^{2} )}}d\beta$$
(46)
$$P_{4} = \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\frac{{N_{1} N_{2} }}{{\frac{{E_{s} }}{{N_{0} }}}}\sum\limits_{n = 0}^{{N_{1} - 1}} {\sum\limits_{\begin{subarray}{l} m = 0 \\ m \ne n \end{subarray} }^{{N_{2} - 1}} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ n \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)( - 1)^{m + n} }}{n - m}} } } \frac{{e^{{\frac{ - \beta (1 + n)}{{\frac{{E_{s} }}{{N_{0} }}(1 + n - n\rho^{2} )}}}} }}{{(1 + n - n\rho^{2} )}}d\beta$$
(47)

Considering P3 in (46)

$$P_{3} = N_{1} N_{2} \sum\limits_{n = 0}^{{N_{1} - 1}} {\sum\limits_{\begin{subarray}{l} m = 0 \\ m \ne n \end{subarray} }^{{N_{2} - 1}} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ n \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)( - 1)^{m + n} }}{{\left( {n - m} \right)\left( {1 + m} \right)}}} } \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)} \left( {1 + m} \right)\frac{{e^{{\frac{ - \beta (1 + m)}{{\frac{{E_{s} }}{{N_{0} }}(1 + m - m\rho^{2} )}}}} }}{{\frac{{E_{s} }}{{N_{0} }}(1 + m - m\rho^{2} )}}d\beta$$
(48)

Rewriting (48) similar to (19)

$$P_{3} = N_{1} N_{2} \sum\limits_{n = 0}^{{N_{1} - 1}} {\sum\limits_{\begin{subarray}{l} m = 0 \\ m \ne n \end{subarray} }^{{N_{2} - 1}} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ n \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)( - 1)^{m + n} }}{{\left( {n - m} \right)\left( {1 + m} \right)}}} } \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)} \frac{1}{{\overline{\beta } }}e^{{ - \frac{\beta }{{\overline{\beta } }}}} d\beta$$
(49)

where

$$\overline{\beta } = \frac{{\left( {\frac{{E_{s} }}{{N_{0} }}(1 + m - m\rho^{2} )} \right)}}{{\left( {1 + m} \right)}}$$
(50)

Comparing (49) with (21) gives

$$P_{3} = N_{1} N_{2} \sum\limits_{n = 0}^{{N_{1} - 1}} {\sum\limits_{\begin{subarray}{l} m = 0 \\ m \ne n \end{subarray} }^{{N_{2} - 1}} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ n \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)( - 1)^{m + n} }}{{\left( {n - m} \right)\left( {1 + m} \right)}}} } \frac{M - 1}{M}\left\{ \begin{aligned} 1 - \sqrt {\frac{{b^{2} \frac{{\overline{\beta } }}{2}}}{{1 + b^{2} \frac{{\overline{\beta } }}{2}}}} \frac{M}{{\left( {M - 1} \right)\pi }} \hfill \\ \left[ {\frac{\pi }{2} + \tan^{ - 1} \left( {\sqrt {\frac{{b^{2} \frac{{\overline{\beta } }}{2}}}{{1 + b^{2} \frac{{\overline{\beta } }}{2}}}} \cot \frac{\pi }{M}} \right)} \right] \hfill \\ \end{aligned} \right\}$$
(51)

Similarly P4 in (47) can be simplified as

$$P_{4} = N_{1} N_{2} \sum\limits_{n = 0}^{{N_{1} - 1}} {\sum\limits_{\begin{subarray}{l} m = 0 \\ m \ne n \end{subarray} }^{{N_{2} - 1}} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ n \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)( - 1)^{m + n} }}{{\left( {n - m} \right)\left( {1 + n} \right)}}} } \frac{M - 1}{M}\left\{ \begin{aligned} 1 - \sqrt {\frac{{b^{2} \frac{{\overline{\beta } }}{2}}}{{1 + b^{2} \frac{{\overline{\beta } }}{2}}}} \frac{M}{{\left( {M - 1} \right)\pi }} \hfill \\ \left[ {\frac{\pi }{2} + \tan^{ - 1} \left( {\sqrt {\frac{{b^{2} \frac{{\overline{\beta } }}{2}}}{{1 + b^{2} \frac{{\overline{\beta } }}{2}}}} \cot \frac{\pi }{M}} \right)} \right] \hfill \\ \end{aligned} \right\}$$
(52)

where

$$\overline{\beta } = \frac{{\left( {\frac{{E_{s} }}{{N_{0} }}(1 + n - n\rho^{2} )} \right)}}{{\left( {1 + n} \right)}}$$
(53)

Considering P1 in (44)

$$P_{1} = N_{1} N_{2} \sum\limits_{r = 0}^{R - 1} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)}}{{(1 + r - r\rho^{2} )}}\frac{{\left( {1 - \rho^{2} } \right)}}{{\left( {1 + r} \right)}}} \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)} \frac{{\left( {1 + r} \right)}}{{\frac{{E_{s} }}{{N_{0} }}(1 + r - r\rho^{2} )}}e^{{\frac{ - \beta (1 + r)}{{\frac{{E_{s} }}{{N_{0} }}(1 + r - r\rho^{2} )}}}} d\beta$$
(54)

Rewriting (54) similar to (19) and comparing with (21) gives

$$P_{1} = N_{1} N_{2} \sum\limits_{r = 0}^{R - 1} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)}}{{(1 + r - r\rho^{2} )}}\frac{{\left( {1 - \rho^{2} } \right)}}{{\left( {1 + r} \right)}}} \left[ {\frac{M - 1}{M}\left\{ \begin{aligned} 1 - \sqrt {\frac{{b^{2} \frac{{\overline{\beta } }}{2}}}{{1 + b^{2} \frac{{\overline{\beta } }}{2}}}} \frac{M}{{\left( {M - 1} \right)\pi }} \hfill \\ \left[ {\frac{\pi }{2} + \tan^{ - 1} \left( {\sqrt {\frac{{b^{2} \frac{{\overline{\beta } }}{2}}}{{1 + b^{2} \frac{{\overline{\beta } }}{2}}}} \cot \frac{\pi }{M}} \right)} \right] \hfill \\ \end{aligned} \right\}} \right]$$
(55)

Rewriting (45) similar to (22) and comparing with (23) gives

$$\begin{aligned} P_{2} = N_{1} N_{2} \sum\limits_{r = 0}^{R - 1} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)}}{{(1 + r - r\rho^{2} )^{2} }}\frac{{\rho^{2} }}{{\left( {1 + r} \right)^{2} }}} \hfill \\ \quad \quad \left[ {\frac{M - 1}{M} - \frac{1}{\pi }\sqrt {\frac{{b^{2} \frac{{\overline{\beta } }}{2m}}}{{1 + b^{2} \frac{{\overline{\beta } }}{2m}}}} \left\{ {\left( {\frac{\pi }{2} + \tan^{ - 1} \alpha } \right)\sum\limits_{k = 0}^{m - 1} {\left( \begin{aligned} 2k \hfill \\ \;k \hfill \\ \end{aligned} \right)\frac{1}{{\left[ {4\left( {1 + b^{2} \frac{{\overline{\beta } }}{2m}} \right)} \right]^{k} }}} + \frac{{\sin (\tan^{ - 1} \alpha )\cos \left( {\tan^{ - 1} \alpha } \right)}}{{2\left( {1 + b^{2} \frac{{\overline{\beta } }}{4}} \right)}}} \right\}} \right] \hfill \\ \end{aligned}$$
(56)

where

$$\overline{\beta } = \frac{{\left( {2\frac{{E_{s} }}{{N_{0} }}(1 + r - r\rho^{2} )} \right)}}{{\left( {1 + r} \right)}}$$
(57)

Substituting (55), (56), (51) and (52) in (43) gives average SER expression of M-ary PSK modulation [i.e. (8)] for the antenna selection scheme 2.

2.3 Scheme 3

The pdf of instantaneous SNR for the antenna selection scheme 3 is given by [40]

$$p_{\beta } \left( \beta \right) = \frac{N}{2}\sum\limits_{m = 0}^{{\frac{N}{2} - 1}} {\sum\limits_{k = 0}^{m} {\sum\limits_{n = 0}^{k + 1} {\frac{{\left( \begin{aligned} \frac{N}{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)\left( \begin{aligned} m \hfill \\ k \hfill \\ \end{aligned} \right)\left( { - 1} \right)^{m} }}{{n!\left( {\frac{{E_{s} }}{{N{}_{0}}}} \right)^{k - n + 2} }}\left\{ {\frac{{\left( {k + 1} \right)!}}{{\left( {k - n + 1} \right)!}}} \right\}^{2} \frac{{\left( {\rho^{2} } \right)^{k + 1 - n} \left( {1 - \rho^{2} } \right)^{n} }}{{\left( {1 + m - m\rho^{2} } \right)^{2m - n + 3} }}\beta^{{\left( {k - n + 1} \right)}} e^{{\frac{{ - \beta \left( {1 + m} \right)}}{{\frac{{E_{s} }}{{N_{0} }}\left( {1 + m - m\rho^{2} } \right)}}}} d\beta } } }$$
(58)

Substituting (58) in (15) gives

$$\begin{aligned} P_{e} = \int\limits_{0}^{\infty } {Q\left( {b\sqrt \beta } \right)\frac{N}{2}\sum\limits_{m = 0}^{{\frac{N}{2} - 1}} {\sum\limits_{k = 0}^{m} {\sum\limits_{n = 0}^{k + 1} {\frac{{\left( \begin{aligned} \frac{N}{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)\left( \begin{aligned} m \hfill \\ k \hfill \\ \end{aligned} \right)\left( { - 1} \right)^{m} }}{{n!\left( {\frac{{E_{s} }}{{N_{0} }}} \right)^{k - n + 2} }}} } } } \left\{ {\frac{(k + 1)!}{(k - n + 1)!}} \right\}^{2} \hfill \\ \quad \quad \frac{{\left( {\rho^{2} } \right)^{k + 1 - n} (1 - \rho^{2} )^{n} }}{{(1 + m - m\rho^{2} )^{2k - n + 3} }}\beta^{{\left( {k - n + 1} \right)}} e^{{\frac{ - \beta (1 + m)}{{\frac{{E_{s} }}{{N_{0} }}(1 + m - m\rho^{2} )}}}} d\beta \hfill \\ \end{aligned}$$
(59)
$$\begin{aligned} P_{e} = \frac{N}{2}\sum\limits_{m = 0}^{{\frac{N}{2} - 1}} {\sum\limits_{k = 0}^{m} {\sum\limits_{n = 0}^{k + 1} {\frac{{\left( \begin{aligned} \frac{N}{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)\left( \begin{aligned} m \hfill \\ k \hfill \\ \end{aligned} \right)\left( { - 1} \right)^{m} }}{n!}} } } \frac{{((k + 1)!)^{2} }}{(k - n + 1)!}\left( {\rho^{2} } \right)^{k + 1 - n} (1 - \rho^{2} )^{n} \hfill \\ \quad \quad \int\limits_{0}^{\infty } {\frac{{Q\left( {b\sqrt \beta } \right)\beta^{k - n + 1} }}{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)^{k - n + 2} (k - n + 1)!}}\frac{1}{{(1 + m - m\rho^{2} )^{2k - n + 3} }}e^{{\frac{ - \beta (1 + m)}{{\frac{{E_{s} }}{{N_{0} }}(1 + m - m\rho^{2} )}}}} d\beta } \hfill \\ \end{aligned}$$
(60)

Rewriting (60) similar to (22)

$$\begin{aligned} P_{e} = \frac{N}{2}\sum\limits_{m = 0}^{{\frac{N}{2} - 1}} {\sum\limits_{k = 0}^{m} {\sum\limits_{n = 0}^{k + 1} {\frac{{\left( \begin{aligned} \frac{N}{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)\left( \begin{aligned} m \hfill \\ k \hfill \\ \end{aligned} \right)\left( { - 1} \right)^{m} }}{{n!(1 + m)^{k - n + 2} }}} } } \frac{{((k + 1)!)^{2} }}{(k - n + 1)!}\frac{{\left( {\rho^{2} } \right)^{k + 1 - n} (1 - \rho^{2} )^{n} }}{{(1 + m - m\rho^{2} )^{k + 1} }} \hfill \\ \quad \quad \int\limits_{0}^{\infty } {\frac{{Q\left( {b\sqrt \beta } \right)\beta^{k - n + 1} }}{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)^{k - n + 2} (k - n + 1)!}}\frac{{(1 + m)^{k - n + 2} }}{{(1 + m - m\rho^{2} )^{k - n + 2} }}e^{{\frac{ - (k - n + 2)\beta (1 + m)}{{(k - n + 2)\frac{{E_{s} }}{{N_{0} }}(1 + m - m\rho^{2} )}}}} d\beta } \hfill \\ \end{aligned}$$
(61)

Comparing (61) with (23) gives the average SER expression of M-ary PSK modulation for antenna selection [i.e. (12)] scheme 3.

Appendix 3

To verify the obtained closed form average SER expressions of M-ary PSK modulation scheme, substitute \(b^{2} = 2\) and \(M = 2\) in (4), (8), (12). This leads to average SER expressions of BPSK modulation scheme. The obtained results matches with the results in [40].

3.1 Scheme 1

On substituting \(b^{2} = 2\) and \(M = 2\) in (34), (36), (38) and (40), we can obtain the following reduced expressions.

$$P_{1}^{\prime } = N\left( {N - 1} \right)\sum\limits_{g = 1}^{N - 2} {\left( \begin{aligned} N - 2 \hfill \\ g \hfill \\ \end{aligned} \right)} \;\frac{{\left( { - 1} \right)^{g} }}{g}\left[ {\frac{1}{2}\left\{ {1 - \sqrt {\frac{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}{{1 + \left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}} } \right\}} \right]$$
(62)
$$P_{2}^{\prime } = N\left( {N - 1} \right)\sum\limits_{g = 1}^{N - 2} {\left( \begin{aligned} N - 2 \hfill \\ g \hfill \\ \end{aligned} \right)} \;\frac{{\left( { - 1} \right)^{g} }}{g(g + 2)}\left\{ {1 - \sqrt {\frac{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)\left( {g + 2 - g\rho^{2} } \right)}}{{(g + 2) + \left( {\frac{{E_{s} }}{{N_{0} }}} \right)(g + 2 - g\rho^{2} )}}} } \right\}$$
(63)
$$P_{3}^{\prime } = \frac{N(N - 1)}{2}\left( {1 - \rho^{2} } \right)\left\{ {\frac{1}{2}\left[ {1 - \sqrt {\frac{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}{{1 + \left( {\frac{{E_{s} }}{{N_{0} }}} \right)}}} } \right]} \right\}$$
(64)
$$P_{4}^{\prime } = \frac{N(N - 1)}{2}\rho^{2} \left[ {\frac{1}{2} - \frac{1}{2}\sqrt {\frac{{E_{s} /N_{0} }}{{1 + \left( {E_{s} /N_{0} } \right)}}} \left( {1 + \frac{2}{{4\left( {1 + \left( {E_{s} /N_{0} } \right)} \right)}}} \right)} \right]$$
(65)

Substituting (62), (63), (64) and (65) in (28) gives

$$P_{e} = N\left( {N - 1} \right)\left[ {\sum\limits_{g = 1}^{N - 2} {\left( \begin{aligned} N - 2 \hfill \\ g \hfill \\ \end{aligned} \right)} \;\frac{{\left( { - 1} \right)^{g} }}{g}\left\{ {\frac{{1 - \sigma_{0} }}{2} - \frac{{\left( {1 - \sigma_{g} } \right)}}{g + 2}} \right\} + \frac{{1 - \sigma_{0} }}{4} - \frac{{\rho^{2} \sigma_{0}^{3} }}{{8\frac{{E_{s} }}{{N_{0} }}}}} \right]$$
(66)

where

$$\sigma_{g} = \sqrt {\frac{{\left( {\frac{{E_{s} }}{{N_{0} }}} \right)\left( {g + 2 - g\rho^{2} } \right)}}{{(g + 2) + \left( {\frac{{E_{s} }}{{N_{0} }}} \right)(g + 2 - g\rho^{2} )}}} ,\quad g = 0,1 \ldots$$
(67)

3.2 Scheme 2

On substituting \(b^{2} = 2\) and \(M = 2\) in (51), (52), (55) and (56), we can obtain the following reduced expressions.

$$P_{3}^{\prime } = N_{1} N_{2} \sum\limits_{n = 0}^{{N_{1} - 1}} {\sum\limits_{\begin{subarray}{l} m = 0 \\ m \ne n \end{subarray} }^{{N_{2} - 1}} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ n \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)( - 1)^{m + n} }}{{\left( {n - m} \right)}}} } \left\{ {\frac{{1 - \sigma_{m} }}{1 + m}} \right\}$$
(68)

where

$$\sigma_{m}^{2} = \frac{{\left( {\frac{{E_{s} }}{{N_{0} }}(1 + m - m\rho^{2} )} \right)}}{{1 + m + \left( {\frac{{E_{s} }}{{N_{0} }}(1 + m - m\rho^{2} )} \right)}};\quad m = 0,1,2, \ldots .$$
(69)
$$P_{4}^{\prime } = \frac{{N_{1} N_{2} }}{2}\sum\limits_{n = 0}^{{N_{1} - 1}} {\sum\limits_{\begin{subarray}{l} m = 0 \\ m \ne n \end{subarray} }^{{N_{2} - 1}} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ n \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)( - 1)^{m + n} }}{{\left( {n - m} \right)}}\left\{ {\frac{{1 - \sigma_{n} }}{1 + n}} \right\}} }$$
(70)

where

$$\sigma_{n}^{2} = \frac{{\left( {\frac{{E_{s} }}{{N_{0} }}(1 + n - n\rho^{2} )} \right)}}{{1 + n + \left( {\frac{{E_{s} }}{{N_{0} }}(1 + n - n\rho^{2} )} \right)}};\quad n = 0,1,2, \ldots$$
(71)
$$P_{1}^{\prime } = \frac{{N_{1} N_{2} }}{2}\sum\limits_{r = 0}^{R - 1} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)}}{{(1 + r - r\rho^{2} )}}\left( {1 - \rho^{2} } \right)\left\{ {\frac{{1 - \sigma_{r} }}{1 + r}} \right\}}$$
(72)
$$P_{2}^{\prime } = \frac{{N_{1} N_{2} }}{2}\sum\limits_{r = 0}^{R - 1} {\frac{{\left( \begin{aligned} N_{1} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)\left( \begin{aligned} N_{2} - 1 \hfill \\ r \hfill \\ \end{aligned} \right)}}{{(1 + r - r\rho^{2} )(1 + r)^{2} }}\rho^{2} \left[ {1 - \sigma_{r} \left( {1 + \frac{{1 - \sigma_{r}^{2} }}{2}} \right)} \right]}$$
(73)

Substituting (68), (70), (72) and (73) in (43) gives

$$\begin{aligned} P_{e} &= \frac{{N_{1} N_{2} }}{2}\sum\limits_{r = 0}^{R - 1} {\frac{{\left( \begin{array}{c} N_{1} - 1 \hfill \\ r \hfill \\ \end{array} \right)\left( \begin{array}{c} N_{2} - 1 \hfill \\ r \hfill \\ \end{array} \right)}}{1 + r}\left\{ {\frac{{1 - \sigma_{r} }}{1 + r} - \frac{{\sigma_{r} \rho^{2} }}{{2\left( {1 + r - r\rho^{2} } \right)\left( {1 + r + \left( {E_{s} /N_{0} \left( {1 + r - r\rho^{2} } \right)} \right)} \right)}}} \right\}} \hfill \\ &\quad + \frac{{N_{1} N_{2} }}{2}\sum\limits_{n = 0}^{{N_{1} - 1}} {\sum\limits_{\begin{subarray}{l} m = 0 \\ m \ne n \end{subarray} }^{{N_{2} - 1}} {\frac{{\left( \begin{array}{c} N_{1} - 1 \hfill \\ n \hfill \\ \end{array} \right)\left( \begin{array}{c} N_{2} - 1 \hfill \\ m \hfill \\ \end{array} \right)( - 1)^{m + n} }}{{\left( {n - m} \right)}}\left\{ {\frac{{1 - \sigma_{m} }}{1 + m} - \frac{{1 - \sigma_{n} }}{1 + n}} \right\}} } \hfill \\ \end{aligned}$$
(74)

where

$$\sigma_{r}^{2} = \frac{{\left( {\frac{{E_{s} }}{{N_{0} }}(1 + r - r\rho^{2} )} \right)}}{{1 + r + \left( {\frac{{E_{s} }}{{N_{0} }}(1 + r - r\rho^{2} )} \right)}};r = 0,1,2, \ldots$$
(75)

3.3 Scheme 3

On substituting \(b^{2} = 2\) and \(M = 2\) in (12), the average SER expression reduces to

$$\begin{aligned} P_{e} = \frac{N}{2}\sum\limits_{m = 0}^{{\frac{N}{2} - 1}} {\sum\limits_{k = 0}^{m} {\sum\limits_{n = 0}^{k + 1} {\frac{{\left( \begin{aligned} \frac{N}{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)\left( \begin{aligned} m \hfill \\ k \hfill \\ \end{aligned} \right)\left( { - 1} \right)^{m} }}{{n!(1 + m)^{k - n + 2} }}} } } \frac{{((k + 1)!)^{2} }}{(k - n + 1)!}\frac{{\left( {\rho^{2} } \right)^{k + 1 - n} (1 - \rho^{2} )^{n} }}{{(1 + m - m\rho^{2} )^{k + 1} }} \hfill \\ \quad \quad \left[ {\frac{1}{2} - \frac{1}{\pi }\sigma_{m} \left\{ {\left( {\frac{\pi }{2} + \tan^{ - 1} (0)} \right)\sum\limits_{t = 0}^{k - n + 1} {\left( \begin{aligned} 2t \hfill \\ \,t \hfill \\ \end{aligned} \right)\left( {\frac{{1 - \sigma_{m}^{2} }}{4}} \right)^{t} } } \right\}} \right] \hfill \\ \end{aligned}$$
(76)
$$\begin{aligned} P_{e} = \frac{N}{4}\sum\limits_{m = 0}^{{\frac{N}{2} - 1}} {\sum\limits_{k = 0}^{m} {\sum\limits_{n = 0}^{k + 1} {\frac{{\left( \begin{aligned} \frac{N}{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)\left( \begin{aligned} m \hfill \\ k \hfill \\ \end{aligned} \right)\left( { - 1} \right)^{m} }}{{n!(1 + m)^{k - n + 2} }}} } } \frac{{((k + 1)!)^{2} }}{(k - n + 1)!}\frac{{\left( {\rho^{2} } \right)^{k - n + 1} (1 - \rho^{2} )^{n} }}{{(1 + m - m\rho^{2} )^{k + 1} }} \hfill \\ \quad \quad \left[ {1 - \sigma_{m} \left\{ {1 + \sum\limits_{t = 1}^{k - n + 1} {\frac{{\left( {2t} \right)!}}{t!t!}} \;\sigma_{m}^{2t} \left( {\frac{{\sigma_{m}^{ - 2} - 1}}{4}} \right)^{t} } \right\}} \right] \hfill \\ \end{aligned}$$
(77)
$$\begin{aligned} P_{e} = \frac{N}{4}\sum\limits_{m = 0}^{{\frac{N}{2} - 1}} {\sum\limits_{k = 0}^{m} {\sum\limits_{n = 0}^{k + 1} {\frac{{\left( \begin{aligned} \frac{N}{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)\left( \begin{aligned} m \hfill \\ k \hfill \\ \end{aligned} \right)\left( { - 1} \right)^{m} }}{{n!(1 + m)^{k - n + 2} }}} } } \frac{{((k + 1)!)^{2} }}{(k - n + 1)!}\frac{{\left( {\rho^{2} } \right)^{k - n + 1} (1 - \rho^{2} )^{n} }}{{(1 + m - m\rho^{2} )^{k + 1} }} \hfill \\ \quad \quad \left[ {1 - \sigma_{m} - \sum\limits_{t = 1}^{k - n + 1} {\frac{{\left( {2t} \right)!}}{{t!2^{t} }}} \frac{{\sigma_{m}^{2t + 1} }}{t!}\left( {\frac{{\sigma_{m}^{ - 2} - 1}}{2}} \right)^{t} } \right] \hfill \\ \end{aligned}$$
(78)
$$\begin{aligned} P_{e} = \frac{N}{4}\sum\limits_{m = 0}^{{\frac{N}{2} - 1}} {\sum\limits_{k = 0}^{m} {\sum\limits_{n = 0}^{k + 1} {\frac{{\left( \begin{aligned} \frac{N}{2} - 1 \hfill \\ m \hfill \\ \end{aligned} \right)\left( \begin{aligned} m \hfill \\ k \hfill \\ \end{aligned} \right)\left( { - 1} \right)^{m} }}{{n!(1 + m)^{k - n + 2} }}} } } \frac{{((k + 1)!)^{2} }}{(k - n + 1)!}\frac{{\left( {\rho^{2} } \right)^{k - n + 1} (1 - \rho^{2} )^{n} }}{{(1 + m - m\rho^{2} )^{k + 1} }} \hfill \\ \quad \quad \left[ {1 - \sigma_{m} - \sum\limits_{t = 1}^{k - n + 1} {\left\{ {1.3..\left( {2t - 1} \right)} \right\}\left\{ {\frac{1 + m}{{2\left( {1 + m - m\rho^{2} } \right)\frac{{E_{s} }}{{N_{0} }}}}} \right\}^{t} } \frac{{\sigma_{m}^{2t + 1} }}{t!}} \right] \hfill \\ \end{aligned}$$
(79)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arthi, M., Arulmozhivarman, P. A Novel Low-Complex Antenna Selection Scheme for Beyond 4G (B4G) Systems. Wireless Pers Commun 95, 3407–3431 (2017). https://doi.org/10.1007/s11277-017-4005-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4005-x

Keywords

Navigation