Skip to main content
Log in

Hierarchical Management Scheme of Biometric Information Through the Synchronization of Heterogeneous Devices

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

As medical technology has been developing, patients’ information (medical information, disease information, etc.) has been diversely used in medical services so that patients’ biometric information can be used for remote diagnosis and examinations. However, since the complexity and uncertainty of patient treatment have been increasing, doctors’ burden due to hospital work has been also increasing. In the present paper, an analytic hierarchy process based patient information management scheme is proposed that can synchronize diverse medical devices used for patient treatment to hierarchically manage patients’ disease information. The purpose of the proposed scheme is to analyze the correlations of medical devices used in medical treatment of patients to induce hierarchical management of patients’ disease information through triangle fuzzy of pairwise comparison scales for medical treatment and efficiently perform not only hospital administrative work but also patients’ disease analysis and treatment. In addition, using the patients’ disease information collected through diverse medical devices, the proposed scheme improves the efficiency of patient treatment methods so that hospitals can calculate the importance of treatment standards in order to hierarchically identify treatment standards. Furthermore, since the proposed scheme enables efficiently selecting treatment methods for patients’ diseases, it has a characteristic of being capable of efficiently improve the ambiguousness and inaccuracy of treatment judgments and treatment compared to existing disease treatment methods. According to the results of performance evaluation, the proposed scheme improved work efficiency by 11.9% over existing techniques and reduced medical device administration costs by 10.9%. Furthermore, the proposed scheme improved patients’ satisfaction with treatment by 23.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Phunchongharn, P., Niyato, D., Hossain, E., & Camorlinga, S. (2009). An EMI-aware prioritized wireless access scheme for e-health application in hospital environments. IEEE Transactions on Information Technology in Biomedicine, 14(5), 1247–1258.

    Article  Google Scholar 

  2. Jeong, Y. S., Lee, S. H., & Shin, S. S. (2014). Access control protocol based on privacy property of patient in m-healthcare emergency. Wireless Personal Communications, 79(4), 2565–2578.

    Article  Google Scholar 

  3. Jeong, Y. S., & Shin, S. S. (2016). An efficient authentication scheme to protect user privacy in seamless big data services. Wireless Personal Communications, 86(1), 7–19.

    Article  Google Scholar 

  4. Liu, Y., Lqbal, M., Naeem, M., Anpalagan, A., & Qadri, N. N. (2015). Resource allocation in hospital networks based on green cognitive radios. Wireless Personal Communication, 85(3), 1487–1507.

    Article  Google Scholar 

  5. Jung, E. Y., Kim, J. H., Chung, K. Y., & Park, D. K. (2013). Home health gateway based healthcare services through U-health platform. Wireless Personal Communications, 73(2), 207–218.

    Article  Google Scholar 

  6. Lee, T. G., & Lee, S. H. (2016). Dynamic bio-sensing process design in mobile wellness information system for smart healthcare. Wireless Personal Communications, 86(1), 201–215.

    Article  Google Scholar 

  7. Choi, S. C., Ryu, M. W., Jin, M., & Kim, J. H. (2014). Internet of Things platform and service trends. Information and Communications Magazine (Information and Communication), 31(4), 20–27.

    Google Scholar 

  8. Burns, A., Greene, B. R., McGrath, M. J., O’Shea, T. J., Kuris, B., Ayer, S. M., et al. (2010). SHIMMERTM—A wireless sensor platform for noninvasive biomedical research. IEEE Sensors Journal, 10(9), 1527–1534.

    Article  Google Scholar 

  9. Newman, K. E., & Blei, M. (2014). Evaluation of smart phones for remote control of a standard hospital room. Wireless Personal Communications, 75(2), 1005–1013.

    Article  Google Scholar 

  10. Dutta, P., & Culler, D. (2008). Epic: An open mote platform for application driven design. In IPSN ‘08. International conference on information processing in sensor networks (pp. 547–548).

  11. Saravanakumar, R., Susila, S. G., & Raja, J. (2010). An energy efficient cluster based node scheduling protocol for wireless sensor networks. In 2010 10th IEEE international conference on solid-state and integrated circuit technology (ICSICT) (pp. 2053–2057).

  12. Lai, J., Ye, W., & Feng, S. L. (2007). LQRD: An improved ECN algorithm. In SNPD 2007. 8th ACIS international conference on software engineering, artificial intelligence, networking, and parallel/distributed computing, vol. I(60533110) (pp. 239–244).

  13. Wagner, J., Buchty, R., Schubert, C., & Berekovic, M. (2013). Designing a low-power wireless sensor node rASIP architecture. In 2013 IEEE workshop on signal processing systems (SiPS) (pp. 106–111).

  14. Roy, K., Kulkarni, J., & Hwang, M. (2009). Low-voltage process-adaptive logic and memory arrays for ultralow-power sensor nodes. In 2009 IEEE sensors (pp. 185–188).

  15. Ohnishi, S., Yamanoi, T., & Imai, H. (June 2011). A fuzzy representation for non-additive weights of AHP. In 2011 IEEE international conference on fuzzy systems (FUZZ) (pp. 672–675).

  16. Kong, F., & Liu, H. Y. (June 2006). Analysis of and improvement on ranking method for fuzzy AHP. In 2006. WCICA 2006. The 6th world congress on intelligent control and automation (Vol. 1, pp. 249–2502).

  17. Wu, X., Fu, Y., & Wang, J. (Aug. 2009). Information systems security risk assessment on improved fuzzy AHP. In ISECS international colloquium on computing, communication, control, and management, 2009. CCCM 2009 (pp. 365–369).

  18. Lee, Y. L. Y., Chen, G., Hanson, S., Sylvester, D., & Blaauw, D. (2010). Ultralow power circuit techniques for a new class of sub-mm3 sensor nodes. In 2010 IEEE custom integrated circuits conference (CICC) (pp. 1–8).

  19. Shen, Q., Liang, X., Shen, X., Lin, X., & Luo, H. Y. (2004). Exploiting geo-distributed clouds for a e-health monitoring system with minimum service delay and privacy preservation. IEEE Journal of Biomedical and Health Informatics, 18(2), 430–439.

    Article  Google Scholar 

  20. Sun, G. L., Yu, J. L., Zhang, Y., & Li, W. X. (2011). Design and implementation of sensor nodes for a wireless body area network. In 2011 4th international conference on biomedical engineering and informatics (BMEI) (Vol. 3, pp. 1043–1406).

  21. Shnayder, V., Chen, B., Lorincz, K., Jones, T. R. F. F., & Welsh, M. (June 2005). Sensor networks for medical care. In Proc. 3rd int. conf. embed. networked sens. syst. SenSys OS (p. 314).

  22. Barth, A. T., Hanson, M. A., Powell, H. C., & Lach, J. (2009). TEMPO 3.1: A body area sensor network platform for continuous movement assessment. In BSN 2009. 6th international workshop on wearable and implantable body sensor networks (pp. 71–76).

  23. Kim, T., Choudhury, S., Doppler, K., & Skoglund, M. (2013). Simultaneous polling mechanism with uplink power control for low power sensor nodes. In 2013 IEEE 77th vehicular technology conference (VTC spring) (pp. 1–6).

  24. Phunchongharn, P., Hossain, E., & Camorlinga, S. (2011). Electromagnetic interference-aware transmission scheduling and power control for dynamic wireless access in hospital environments. IEEE Transactions on Information Technology in Biomedicine, 15(6), 890–899.

    Article  Google Scholar 

  25. Furahata, H. (1999). Electromagnetic interferences of electric medical equipment from hand-held radiocommunication equipment. In International symposium on electromagnetic compatibility (pp. 468–471).

Download references

Acknowledgements

This Research was supported by the Tongmyong University Research Grants 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Soo Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, YS., Bae, WS. & Shin, SS. Hierarchical Management Scheme of Biometric Information Through the Synchronization of Heterogeneous Devices. Wireless Pers Commun 98, 3071–3085 (2018). https://doi.org/10.1007/s11277-017-4049-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4049-y

Keywords

Navigation