Skip to main content
Log in

Spectrum Efficiency at the Extensive and Intensive Edges

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Future 5G architectures will need access to additional spectrum either at the extensive edge (accessing hitherto unused spectrum or refarming assigned spectrum) or at the intensive edge (making more productive use of used spectrum). A full understanding and pursuit of spectrum efficiency dividends will be a deciding factor in the successful deployment of these future wireless networks. A stylized general equilibrium model illustrates the type of trade-offs involved with thinking about efficient spectrum assignments at the intensive edge and draws inference for the type of spectrum management reforms that would best accommodate the spectrum needs of the next generation of radio networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Using the supply functions above the total derivatives for the changes in G, C and W, are:

    $$\begin{aligned} dG= & {} \frac{\partial G}{\partial n^{G}}dn^{G}+\frac{\partial G}{\partial f^{G}}\left( \frac{\partial f^{G}}{\partial n^{G}}dn^{G}+\frac{\partial f^{G}}{\partial n^{C}}dn^{C}+\frac{\partial f^{G}}{\partial n^{W}}dn^{W}\right) \\ dC= & {} \frac{\partial C}{\partial n^{C}}dn^{C}+\frac{\partial C}{\partial f^{C}} \left( \frac{\partial f^{C}}{\partial n^{G}}dn^{G}+\frac{\partial f^{C}}{ \partial n^{C}}dn^{C}+\frac{\partial f^{C}}{\partial n^{W}}dn^{W}\right) \\ dW= & {} \frac{\partial W}{\partial n^{W}}dn^{W}+\frac{\partial W}{\partial f^{W}} \left( \frac{\partial f^{W}}{\partial n^{G}}dn^{G}+\frac{\partial f^{W}}{ \partial n^{C}}dn^{C}+\frac{\partial f^{W}}{\partial n^{W}}dn^{W}\right) \end{aligned}$$

References

  1. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  2. Basaure, A., & Holland, O. (2015). Optimizing spectrum value through flexible spectrum licensing. 2015 IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN) (pp. 135–146). IEEE.

  3. Burns, J. W. (2002). Measuring spectrum efficiency—the art of spectrum utilization metrics. In IEEE conference–getting the most out of the radio spectrum, London. IEEE.

  4. Bykowsky, M. M., Olson, M., & Sharkey, W. W. (2010). Efficiency gains from using a market approach to spectrum management. Information Economics and Policy, 22(1), 73–90.

    Article  Google Scholar 

  5. Cave, M., Doyle, C., & Webb, W. (2007). Essentials of modern spectrum management. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  6. Chávez-Santiago, R., Szydełko, M., Kliks, A., Foukalas, F., Haddad, Y., Nolan, K. E., et al. (2015). 5G: The convergence of wireless communications. Wireless Personal Communications, 83(3), 1617–1642.

    Article  Google Scholar 

  7. Coelli, T. J., Rao, D. S. P., O’Donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency and productivity analysis. New York: Springer.

    MATH  Google Scholar 

  8. Engström, K. (2004). Frequency economy: New convergence. EBU Technical Review, April 2004, 1–10.

  9. FCC. (2002). Report of the spectrum efficiency working group. ET Docket No. 02-135, November 2002, Spectrum Policy Task Force. Washington, DC: Federal Communications Commission.

  10. FCC. (2008). In the matter of unlicensed operation in the TV broadcast bands: Second report and order. ET Docket 08-260A, Washington, DC: Federal Communications Commission.

  11. FCC. (2010). Connecting America: The national broadband plan. Washington, DC: Federal Communications Commission. Accessed October 20, 2011 at www.broadband.gov/plan.

  12. FCC. (2011). Spectrum efficiency metrics. Technological Advisory Council (TAC), Sharing Work Group, Washington, DC: Federal Communications Commission.

  13. FCC. (2014). Expanding the economic and innovation opportunities of spectrum through incentive auctions. GN Docket No. 12-268, June 2, 2014. FCC 14–50. Washington, DC: Federal Communications Commission.

  14. Freyens, B. P. (2009). A policy spectrum for spectrum economics. Information Economics and Policy, 21(2), 128–144.

    Article  Google Scholar 

  15. Freyens, B. P. (2010). Shared of exclusive radio waves—A dilemma gone astray. Telematics and Informatics, 27(2), 293–304.

    Article  Google Scholar 

  16. Freyens, B. P., & Alexander, S. (2015). Policy objectives and spectrum rights for future network developments. In 2015 IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN) (pp. 229–240). IEEE.

  17. Freyens, B. P., & Jones, C. (2014). Efficient allocation of radio spectrum. Journal of Public Economic Theory, 16(1), 1–23.

    Article  Google Scholar 

  18. Freyens, B. P., & Loney, M. (2011). Digital switchover and regulatory design for competing white space usage rights. In 2011 IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN) (pp. 32–40). IEEE.

  19. Freyens, B. P., & Loney, M. (2011). Land of white space opportunity: Channel planning and DTV restack in Australia. Info, 13(4), 30–41.

    Article  Google Scholar 

  20. Freyens, B. P., & Yerokhin, O. (2011). Allocative vs productive spectrum efficiency. Telecommunications Policy, 35(4), 291–300.

    Article  Google Scholar 

  21. Freyens, B. P., Caputo, M., & Levy, A. (2016). Entry, royalites and allocation of spectrum to broadcasting. Journal of Public Economic Theory (forthcoming).

  22. Gomez, M. M., & Weiss, M. B. (2016). Wireless network virtualization: Opportunities for spectrum sharing in the 3.5 GHz band. In International conference on cognitive radio oriented wireless networks (pp. 232–245). Springer.

  23. Hazlett, T. W. (2006). Spectrum allocation and economic efficiency. Reforming spectrum policy. Vodafone Policy Papers, Nr 5.

  24. Hazlett, T. W. (2008). Optimal abolition of FCC spectrum allocation. Journal of Economic Perspectives, 22(1), 103–128.

    Article  Google Scholar 

  25. Hazlett, T. W., & Muñoz, R. E. (2009). A welfare analysis of spectrum allocation policies. RAND Journal of Economics, 40(3), 424–454.

    Article  Google Scholar 

  26. Huschke, J., Sachs, J., Balachandran, K., & Karlsson, J. (2011). Spectrum requirements for TV broadcast services using cellular transmitters. In: New frontiers in dynamic spectrum access networks (DySPAN).

  27. Khun-Jush, J., Bender, P., Deschamps, B., & Gundlach, M. (2012). Licensed shared access as complementary approach to meet spectrum demands: Benefits for next generation cellular systems. In ETSI Workshop on reconfigurable radio systems.

  28. Liu, C., & Berry, R. A. Competition with shared spectrum. In 2014 2014 IEEE international symposium on dynamic spectrum access networks (DYSPAN) (pp. 498–509). IEEE.

  29. Liu, C., & Berry, R. A. (2015). Competition and investment in shared spectrum. In 2015 49th Asilomar conference on signals, systems and computers (pp. 643–647). IEEE.

  30. Mankiw, N. G., & Whinston, M. D. (1986). Free entry and social inefficiency. RAND Journal of Economics, 17(1), 48–58.

    Article  Google Scholar 

  31. Mitola, J., Guerci, J., Reed, J., Yao, Y.-D., Chen, Y., Clancy, T. C., et al. (2014). Accelerating 5G QoE via public-private spectrum sharing. IEEE Communications Magazine, 52(5), 77–85.

    Article  Google Scholar 

  32. Morgadoetal 2015 : Morgado, A., Gomes, A., Frascolla, V., Ntougias, K., Papadias, C., Slock, D., et al. (2015) Dynamic LSA for 5G networks the ADEL perspective. In 2015 European conference on networks and communications (EuCNC) (pp. 190–194). IEEE.

  33. Ramaprasath, A., Hariharan, K., & Srinivasan, A. (2014). Cache coherency algorithm to optimize bandwidth in mobile networks. In Networks and communications (NetCom2013) (pp. 297–305). Springer.

  34. Rysavy, P. (2014). Challenges and considerations in defining spectrum efficiency. Proceedings of the IEEE, 102(3), 386–392. IEEE.

    Article  Google Scholar 

  35. Sykora, J., Bota, V., Zhang, Y., & Ruiz, S. (2016). Cooperative strategies and networks. In N. Cardona (Ed.), Cooperative radio communications for green smart environments. Gistrup: River Publishers.

    Google Scholar 

  36. Weiss, M. B., Lehr, W. H., Acker, A., & Gomez, M. M. (2015). Socio-technical considerations for Spectrum Access System (SAS) design. In IEEE international symposium on dynamic spectrum access networks (DySPAN).

  37. Yrjölä, S., Ahokangas, P., & Matinmikko, M. (2015). Evaluation of recent spectrum sharing concepts from business model scalability point of view. 2015 IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN) (pp. 246–255). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Pierre Freyens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freyens, B.P. Spectrum Efficiency at the Extensive and Intensive Edges. Wireless Pers Commun 96, 3499–3514 (2017). https://doi.org/10.1007/s11277-017-4105-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4105-7

Keywords

Navigation