Skip to main content

Advertisement

Log in

Lightweight Security Protocol for ECG Bio-Sensors

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Securing biomedical information is a critical issue in wireless body sensor networks (WBSNs). However, since sensors used in a WBSN tend to have limited processing capabilities and energy sources, minimizing the overhead imposed by security protocol is a challenging problem. This paper proposes a scheme that uses the electrocardiogram (ECG) features to provide a lightweight protocol that can be used to provide several security properties for biomedical sensors, in particular, those that have the ability to capture ECG waveforms. The security of the proposed scheme relies on the operation of the Pan Tompkins algorithm where certain information is extracted from ECG that cannot be reversed back. The implementation is based on the IEEE 802.15.4 standard, which specifies the physical layer for low-rate wireless personal area network. As a result, the proposed security protocol utilizes the effectiveness of several security techniques, such as nonce and hash at the biosensor side by relying on the characteristics of ECG. This reduces the overhead caused by providing security layer to the operation of the sensor. Formal analysis methods were used to demonstrate the suitability of the proposed protocol for WBSNs and prove its security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys Tutorials, 16(3), 1658–1686.

    Article  Google Scholar 

  2. Gawanmeh, A., Al-Hamadi, H. Al-Qutayri, M., Chin, S. -K., & Saleem, K. (2015). Reliability analysis of healthcare information systems:State of the art and future directions. In 2015 17th International conference on e-health networking, application andservices, HealthCom 2015 (pp. 68–74).

  3. Prasad, N. R., & Alam, M. (2006). Security framework for wireless sensor networks. Wireless Personal Communications, 37(3), 455–469.

    Article  Google Scholar 

  4. Raja, K. S., & Kiruthika, U. (2015). An energy efficient method for secure and reliable data transmission in wireless body area networks using RelAODV. Wireless Personal Communications, 83(4), 2975–2997.

    Article  Google Scholar 

  5. Bouakkaz, F., Omar, M., Laib, S., Guermouz, L., Tari, A., & Bouabdallah, A. (2016). Lightweight sharing scheme for data integrity protection in WSNs. Wireless Personal Communications, 89(1), 1–16.

    Article  Google Scholar 

  6. Ma, L., Ge, Y., & Zhu, Y. (2013). Tinyzkp: A lightweight authentication scheme based on zero-knowledge proof for wireless body area networks. Wireless Personal Communications, 77(2), 1077–1090.

    Article  Google Scholar 

  7. Lu, H., Li, J., & Guizani, M. (2014). Secure and efficient data transmission for cluster-based wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(3), 750–761.

    Article  Google Scholar 

  8. He, D., Chan, S., Guizani, M., Yang, H., & Zhou, B. (2015). Secure and distributed data discovery and dissemination in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(4), 1129–1139.

    Article  Google Scholar 

  9. Hsueh, C.-T., Wen, C.-Y., & Ouyang, Y.-C. (2015). A secure scheme against power exhausting attacks in hierarchical wireless sensor networks. IEEE Sensors Journal, 15(6), 3590–3602.

    Article  Google Scholar 

  10. Kafle, V., Fukushima, Y., & Harai, H. (2015). Design and implementation of dynamic mobile sensor network platform. IEEE Communications Magazine, 53(3), 48–57.

    Article  Google Scholar 

  11. He, D., Chan, S., & Guizani, M. (2014). Small data dissemination for wireless sensor networks: The security aspect. IEEE Wireless Communications, 21(3), 110–116.

    Article  Google Scholar 

  12. Gandino, F., Montrucchio, B., & Rebaudengo, M. (2014). Key management for static wireless sensor networks with node adding. IEEE Transactions on Industrial Informatics, 10(2), 1133–1143.

    Article  Google Scholar 

  13. Guo, L., Wu, J., Xia, Z., & Li, J. (2015). Proposed security mechanism for XMPP-based communications of ISO/IEC/IEEE 21451 sensor networks. IEEE Sensors Journal, 15(5), 2577–2586.

    Article  Google Scholar 

  14. Balasubramanian, V., Hoang, D., & Zia, T. (2011). Addressing the confidentiality and integrity of assistive care loop framework using wireless sensor networks. In International conference on systems engineering (pp. 416–421).

  15. Majidi, M., Mobarhan, R., Hardoroudi, A., H-Ismail, A., & Parchinaki, A. (2011). Energy cost analyses of key management techniques for secure patient monitoring in WSN. In IEEE open systems (pp. 111–115).

  16. Saleem, K., Derhab, A., Al-Muhtadi, J., & Shahzad, B. (2014). Human-oriented design of secure machine-to-machine communication system for e-healthcare society. Computers in Human Behavior, 51, 977–985.

    Article  Google Scholar 

  17. Saleem, K., Derhab, A., & Al-Muhtadi, J. (2014). Low delay and secure M2M communication mechanism for ehealthcare. In IEEE 16th international conference on e-health networking, applications and services (pp. 105–110).

  18. Chen, L., Cao, Z., Lu, R., Liang, X., & Shen, X. (2011). EPF: an eventaided packet forwarding protocol for privacy preserving mobile healthcare social networks. In Global communications conference (pp. 1–5).

  19. Liang, X., Lu, R., Chen, L., Lin, X., & Shen, X. (2011). PEC: A privacy-preserving emergency call scheme for mobile healthcare social networks. Journal of Communications and Networks, 13(2), 102–112.

    Article  Google Scholar 

  20. Lu, R., Lin, X., & Shen, X. (2013). SPOC: A secure and privacy-preserving opportunistic computing framework for mobile-healthcare emergency. IEEE Transactions on Parallel and Distributed Systems, 24(3), 614–624.

    Article  Google Scholar 

  21. Avancha, S., Baxi, A., & Kotz, D. (2009). Privacy in mobile technology for personal healthcare. ACM Computing Surveys, 45(1), 3.

    Google Scholar 

  22. Rushanan, M., Rubin, A., Kune, D., & Swanson, C. (2014). SoK: Security and privacy in implantable medical devices and body area networks. In IEEE symposium on security and privacy (pp. 524–539).

  23. Poon, C., Zhang, Y.-T., & Bao, S.-D. (2006). A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health. IEEE Communications Magazine, 44(4), 73–81.

    Article  Google Scholar 

  24. Bao, S. -D., Zhang, Y. -T., & Feng Shen, L. (2005). Physiological signal based entity authentication for body area sensor networks and mobile healthcare systems. In 27th Annual international conference of the engineering in medicine and biology society (pp. 2455–2458).

  25. Cherukuri, S., Venkatasubramanian, K., & Gupta, S. (2003). Biosec: A biometric based approach for securing communication in wireless networks of biosensors implanted in the human body. In International conference on parallel processing workshops (pp. 432–439).

  26. Venkatasubramanian, K., Venkatasubramanian, Banerjee, A., & Gupta, S. (2008). EKG-based key agreement in body sensor networks. In IEEE INFOCOM workshops (pp. 1–6).

  27. Zhang, Z., Wang, H., Vasilakos, A., & Fang, H. (2012). ECG-cryptography and authentication in body area networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1070–1078.

    Article  Google Scholar 

  28. Chen, X., Zhang, Y., Zhang, G., & Zhang, Y. (2012). Evaluation of ECG random number generator for wireless body sensor networks security. In Biomedical engineering and informatics (pp. 1308–1311).

  29. Al Hamadi, H., Gawanmeh, A., & Al-Qutayri, M. (2014). A verification methodology for a wireless body sensor network functionality. In 2014 IEEE-EMBS international conference on biomedical and health informatics, BHI 2014 (pp. 635–639). IEEE.

  30. Al-Hamadi, H., Gawanmeh, A., & Al-Qutayri, M. (2015). Formalizing electrocardiogram (ecg) signal behavior in event-b. In 2014 IEEE 16th international conference on e-health networking, applications and services, Healthcom 2014 (pp. 55–60). IEEE.

  31. Al-Hamadi, H., Gawanmeh, A., Al-Qutayri, M., & Ismail, M. (2017). A framework for the verification of an ecg biosensor algorithm. Analog Integrated Circuits and Signal Processing, 90(3), 523–538.

    Article  Google Scholar 

  32. Gawanmeh, A. (2013). An axiomatic model for formal specification requirements of ubiquitous healthcare systems. In 2013 IEEE 10th consumer communications and networking conference. CCNC 2013 (pp. 898–902).

  33. Lugovaya, T. (2005). Biometric human identification based on electrocardiogram. Master’s thesis, Faculty of Computing Technologies and Informatics, Electrotechnical University, Saint-Petersburg, Russian Federation.

  34. Biel, L., Pettersson, O., Philipson, L., & Wide, P. (1999). ECG analysis: A new approach in human identification. In Proceedings of the 16th IEEE instrumentation and measurement technology conference (vol. 1, pp. 557–561).

  35. Irvine, J. M., Israel, S. A., Scruggs, W. T., & Worek, W. J. (2008). eigenPulse: Robust human identification from cardiovascular function. Pattern Recognition, 41(11), 3427–3435.

    Article  Google Scholar 

  36. Wang, Y., Agrafioti, F., Hatzinakos, D., & Plataniotis, K. N. (2008). Analysis of human electrocardiogram for biometric recognition. EURASIP Journal on Advance Signal Process, 2008, 148658.

    Article  MATH  Google Scholar 

  37. Fang, S.-C., & Chan, H.-L. (2009). Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space. Pattern Recognition, 42(9), 1824–1831.

    Article  Google Scholar 

  38. Plataniotis, K. N., Hatzinakos, D., & Lee, J. K. M. (2006). ECG biometric recognition without fiducial detection. In Biometric consortium conference (2006). Biometrics symposium: Special session on research at the (pp. 1–6).

  39. Wang, J., She, M., Nahavandi, S., & Kouzani, A. (2013). Human identification from ECG signals via sparse representation of local segments. IEEE Signal Processing Letters, 20(10), 937–940.

    Article  Google Scholar 

  40. Israel, S. A., Irvine, J. M., Cheng, A., Wiederhold, M. D., & Wiederhold, B. K. (2005). {ECG} to identify individuals. Pattern Recognition, 38(1), 133–142.

    Article  Google Scholar 

  41. Singh, Y., & Singh, S. (2012). Evaluation of electrocardiogram for biometric authentication. Journal of Information Security, 3(1), 39–48.

    Article  Google Scholar 

  42. Callaway, E., Gorday, P., Hester, L., Gutierrez, J., Naeve, M., Heile, B., et al. (2002). Home networking with IEEE 802.15.4: A developing standard for low-rate wireless personal area networks. IEEE Communications Magazine, 40(8), 70–77.

    Article  Google Scholar 

  43. Peters, P. R. M. A review of ProVerif as an automatic securityprotocol verifier. Http://agoraproject.eu/papers/A review ofProVerif as an automatic security protocol verifier.pdf, Access in November 14, 2015.

  44. Blanchet, B. & Chaudhuri, A. (2008). Automated formal analysis of a protocol for secure file sharing on untrusted storage. In Proceedings of the 29th IEEE symposium on security and privacy (pp. 417–431).

  45. Kusters, R., & Truderung, T. (2009). Using proverif to analyze protocols with diffie-hellman exponentiation. In 22nd IEEE computer security foundations symposium (pp. 157–171).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussam Al-Hamadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hamadi, H., Gawanmeh, A., Baek, J. et al. Lightweight Security Protocol for ECG Bio-Sensors. Wireless Pers Commun 95, 5097–5120 (2017). https://doi.org/10.1007/s11277-017-4147-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4147-x

Keywords

Navigation