Skip to main content
Log in

Quality of Service Aware Inter Carrier Interference Mitigation and Antenna Selection Schemes for Beyond 4G Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Future broadband wireless communication systems demand high quality of service (QoS) for anytime anywhere multimedia applications. The standards which use orthogonal frequency division multiplexing (OFDM) coupled with multi input multi output (MIMO) are expected to rule the future wireless world. Time selective nature of the channel introduces inter carrier interference (ICI), which is the major performance limiting parameter in OFDM based systems. ICI causes loss in spectral efficiency and results in poor bit error rate (BER) performance, affecting the QoS of MIMO-OFDM systems. The conventional single input single output (SISO)-OFDM-flexible subcarrier spacing (FSS) system offers better performance than the fixed subcarrier spacing systems in terms of ICI mitigation. But BER and spectral efficiency performance of SISO-OFDM-FSS is not good enough to satisfy the requirements of future wireless broadband services. To improve the BER performance, SISO-OFDM system is replaced by space frequency block coded (SFBC)-OFDM system, which adds spatial and frequency diversity benefits to the conventional system. More number of antennas in the MIMO scheme increases the hardware cost, computational complexity and percentage of overhead. In the present study, to improve the spectral efficiency and to reduce the complexity and cost, optimal transmit antenna selection (OTAS) is combined with the SFBC-OFDM-FSS scheme. The simulation results prove that the proposed SFBC-OFDM-FSS-OTAS scheme offers better QoS than the conventional SISO-OFDM-FSS scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eddie, B. T., Wei, G., & Chen, F. J. (2007). Improving QoS with MIMO-OFDM in future broadband wireless networks. In Strengthening the role of ICT in development (pp. 360–371).

  2. Torabi, M. (2008). Adaptive modulation for space–frequency block coded OFDM systems. AEU-International Journal of Electronics and Communications, 62(7), 521–533.

    Article  Google Scholar 

  3. Sesia, S., Toufik, I., & Baker, M. (2011). LTE—The UMTS long term evolution from theory to practice (2nd ed.). London: Wiley.

    Book  Google Scholar 

  4. Babu, K. V., Reddy, G. R., & Prakash, J. A. (2014). Fractionally spaced equalizer based on dynamically varying modulus algorithm for spectrally efficient channel compensation in SC-FDMA based systems. Wireless Networks, 20(6), 1387–1398.

    Article  Google Scholar 

  5. Farhang-Boroujeny, B. (2011). OFDM versus filter bank multicarrier. IEEE Signal Processing Magazine, 28(3), 92–112.

    Article  Google Scholar 

  6. Jeon, D., Kim, S., Kwon, B., Lee, H., & Lee, S. (2016). Prototype filter design for QAM-based filter bank multicarrier system. Digital Signal Processing, 57, 66–78.

    Article  MathSciNet  Google Scholar 

  7. Mattera, D., Tanda, M., & Bellanger, M. (2016). Filter bank multicarrier with PAM modulation for future wireless systems. Signal Processing, 120, 594–606.

    Article  Google Scholar 

  8. Shahabinejad, M., & Talebi, S. (2013). Space–time–frequency coding over quasi-static frequency-selective channels with linear complexity for the ML receiver. Scientia Iranica, 20(3), 738–745.

    Google Scholar 

  9. Das, S. S. (2007). Techniques to enhance spectral efficiency of OFDM wireless systems. (Doctoral dissertation, Aalborg University).

  10. Horvat, M., Carbonelli, C., Bai, Z., & Jung, P. (2010). On the performance evaluation of an LTE SFBC system with Wiener channel estimation in frequency-selective channels. Computer Communications, 33(17), 2031–2038.

    Article  Google Scholar 

  11. Oluwafemi, I. B., & Mneney, S. H. (2013). Review of space-time coded orthogonal frequency division multiplexing systems for wireless communication. IETE Technical Review, 30(5), 417–426.

    Article  Google Scholar 

  12. Sreedhar, D., & Chockalingam, A. (2007). Detection of SFBC-OFDM signals in frequency and time-selective MIMO channels. In Proceedings of wireless communications and networking conference (pp. 852–857).

  13. Sreedhar, D., & Chockalingam, A. (2007). ICI-ISI mitigation in cooperative SFBC-OFDM with carrier frequency offset. In Proceedings of IEEE 18th international symposium on personal, indoor and mobile radio communications (pp. 1–5).

  14. Jadhao, A. M., & Ghatol, A. A. (2008). Effect of carrier frequency offset on cooperative Alamouti STC OFDM systems. IETE Technical Review, 25(4), 186–191.

    Article  Google Scholar 

  15. Anandpara, M., Erwa, E., Golab, J., Smanta, R., & Wang, H. H. (2003). Inter-carrier interference cancellation for OFDM systems. Austin: University of Texas, EE 381K-11.

  16. Zhao, Y., & Häggman, S. G. (2001). Inter carrier interference self-cancellation scheme for OFDM mobile communication systems. IEEE Transactions on Communications, 49(7), 1185–1191.

    Article  MATH  Google Scholar 

  17. Choi, J. M., & Lee, J. H. (2009). Frequency-domain partial response coding for Alamouti SFBC-OFDM system in doubly selective channels. IEICE Transactions on Communications, 92(6), 2298–2302.

    Article  Google Scholar 

  18. Stamoulis, A., Diggavi, S. N., & Al-Dhahir, N. (2002). Intercarrier interference in MIMO OFDM. IEEE Transactions on Signal Processing, 50(10), 2451–2464.

    Article  Google Scholar 

  19. Kim, K., Park, H., & Kwon, H. M. (2011). Rate-compatible SFBC-OFDM under rapidly time-varying channels. IEEE Transactions on Communications, 59(8), 2070–2077.

    Article  Google Scholar 

  20. Wang, Y. Y. (2014). Estimation of CFO and STO for an OFDM using general ICI self-cancellation precoding. Digital Signal Processing, 31, 35–44.

    Article  Google Scholar 

  21. Jayaprakash, A., & Reddy, G. R. (2016). Covariance fitting based blind carrier frequency offset estimation method for OFDM systems. IEEE Transactions on Vehicular Technology, 65(12), 10101–10105.

    Article  Google Scholar 

  22. Jayaprakash, A., & Reddy, G. R. (2016). Robust blind carrier frequency offset estimation algorithm for OFDM systems. Wireless Personal Communications. doi:10.1007/s11277-016-3650-9.

    Google Scholar 

  23. Prasad, R., Das, S. S., & Rahman, M. I. (2010). Adaptive phy-mac design for broadband wireless systems (Vol. 10). Aalborg: River Publishers.

    Google Scholar 

  24. Das, S. S., De Carvalho, E., & Prasad, R. (2008). Performance analysis of OFDM systems with adaptive sub carrier bandwidth. IEEE Transactions on Wireless Communications, 7(4), 1117–1122.

    Article  Google Scholar 

  25. Das, S. S., Carvalho, E. D., & Prasad, R. (2007). Dynamically adaptive bandwidth for sub carriers in OFDM based wireless systems. In Proceedings of wireless communications and networking conference (pp. 1378–1383).

  26. Das, S. S., De Carvalho, E., & Prasad, R. (2007). Variable sub-carrier bandwidth in OFDM framework. Electronics Letters, 43(1), 46–48.

    Article  Google Scholar 

  27. Gore, D., & Paulraj, A. J. (2002). MIMO antenna subset selection with space–time coding. IEEE Transactions on Signal Processing, 50(10), 2580–2588.

    Article  Google Scholar 

  28. Sure, P., & Bhuma, C. M. (2015). A pilot aided channel estimator using DFT based time interpolator for massive MIMO-OFDM systems. AEU-International Journal of Electronics and Communications, 69(1), 321–327.

    Article  Google Scholar 

  29. Molisch, A. F., Win, M. Z., Choi, Y. S., & Winters, J. H. (2005). Capacity of MIMO systems with antenna selection. IEEE Transactions on Wireless Communications, 4(4), 1759–1772.

    Article  Google Scholar 

  30. Blum, R. S., & Winters, J. H. (2002). On optimum MIMO with antenna selection. IEEE Communications Letters, 6(8), 322–324.

    Article  Google Scholar 

  31. Gorokhov, A., Gore, D., & Paulraj, A. (2003). Receive antenna selection for MIMO flat-fading channels: Theory and algorithms. IEEE Transactions on Information Theory, 49(10), 2687–2696.

    Article  MathSciNet  MATH  Google Scholar 

  32. Hu, B. B., Liu, Y. A., Gang, X. I. E., Gao, J. C., & Yang, Y. L. (2014). Energy efficiency of massive MIMO wireless communication systems with antenna selection. The Journal of China Universities of Posts and Telecommunications, 21(6), 1–8.

    Article  Google Scholar 

  33. Yu, X. B., Yin, X., Liu, X. S., & Xu, D. Z. (2012). Performance of variable-power adaptive M-QAM with transmit antenna selection and delayed feedback in Nakagami fading channel. AEU-International Journal of Electronics and Communications, 66(4), 340–348.

    Article  Google Scholar 

  34. Trivedi, Y. N., & Chaturvedi, A. K. (2011). Performance analysis of multiple input single output systems using transmit beamforming and antenna selection with delayed channel state information at the transmitter. IET Communications, 5(6), 827–834.

    Article  MathSciNet  MATH  Google Scholar 

  35. Arthi, M., Arulmozhivarman, P., Babu, K. V., & George, E. M. (2017). Quality of service aware antenna selection scheme for multi-hop relay networks. AEU-International Journal of Electronics and Communications, 71, 9–20.

    Article  Google Scholar 

  36. Shi, H., Katayama, M., Yamazato, T., Okada, H., & Ogawa, A. (2001). An adaptive antenna selection scheme for transmit diversity in OFDM systems. In Proceedings of IEEE VTS 54th vehicular technology conference (pp. 2168–2172).

  37. Babu, K. V., Reddy, G. R., & Nallagatla, B. K. (2016). Spectral efficiency maximization in MISO-OFDM systems using rate adaptive bit loading and transmit antenna selection techniques. Journal of Engineering Science and Technology (JESTEC). http://jestec.taylors.edu.my/Articles%20in%20Press/12_11_4.pdf.

  38. Babu, K. V., Reddy, G. R., & Arthi, M. (2016). An improved bit loading technique for enhanced energy efficiency in next generation voice/video applications. Journal of Engineering Science and Technology (JESTEC), 11(4), 476–495.

    Google Scholar 

  39. Babu, K. V., Reddy, G. R., & Arthi, M. (2012). Modified subcarrier bandwidth (MDSB) OFDM system for energy efficient transmission in high mobility applications. Journal of Theoretical and Applied Information Technology, 42, 221–226.

    Google Scholar 

  40. Babu, K. V., Reddy, G. R., & Balakrishnan, L. (2014). Spectral efficiency improvement in OFDMA systems with modified adaptive subcarrier spacing based resource allocation algorithm. HKIE Transactions, 21(3), 158–169.

    Article  Google Scholar 

  41. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  42. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  MathSciNet  MATH  Google Scholar 

  43. Rappaport, T. S. (2002). Mobile radio propagation: Small-scale fading and multipath, wireless communications (2nd ed., pp. 177–248). Prentice: Prentice Hall PTR.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vinoth Babu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, K.V., Reddy, G.R. Quality of Service Aware Inter Carrier Interference Mitigation and Antenna Selection Schemes for Beyond 4G Systems. Wireless Pers Commun 96, 199–216 (2017). https://doi.org/10.1007/s11277-017-4162-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4162-y

Keywords

Navigation