Skip to main content

Advertisement

Log in

Adaptive Per-spatial Stream Power Allocation Algorithms for Single-User MIMO-OFDM Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents adaptive per-spatial stream power allocation algorithms for Single User Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (SU MIMO-OFDM) systems. Three efficient and low-complexity Greedy Power Allocation (GPA) algorithms are proposed to maximize the throughput and spectral efficiency of the SU MIMO-OFDM systems. Firstly, the low-complexity pre-coded GPA algorithms are developed for the MIMO systems. The spatial sub-channels are created by applying the so-called Singular Value Decomposition (SVD) technique on the MIMO channel matrix, and then the Pre-GPA algorithms are applied to exploit the multi-path and spatial diversities. Secondly, the spatial and frequency diversities are exploited by adaptively allocating the system sub-carriers to the spatial sub-channels followed by Per-Spatial GPA (PSGPA). Finally, spatial multiplexing-based GPA algorithms are proposed to optimize the spectral efficiency of the SU MIMO-OFDM system. An optimal two-dimensional Spatial-Frequency GPA (SFGPA) algorithm is proposed to efficiently improve the average system spectral efficiency. The high computational complexity of the optimal SFGPA solution is simplified by proposing a low-complexity Per-Spatial GPA with Excess Power Moving down (PSGPA-EPMd) algorithm, which moves the per-spatial excess power downwards to enhance the spectral efficiency of the spatial multiplexing-based SU MIMO-OFDM systems. The proposed algorithms achieve better spectral efficiency and maximize the throughput in comparison with conventional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16, 1451–1458.

    Article  Google Scholar 

  2. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6, 311–335.

    Article  Google Scholar 

  3. Telatar, E. (1999). Capacity of multi-antenna Gaussian channels. European transactions on Telecommunications, 10, 585–595.

    Article  MathSciNet  Google Scholar 

  4. Andrews, J. G., Ghosh, A., & Muhamed, R. (2007). Fundamentals of WiMAX: Understanding broadband wireless networking. Upper Saddle River: Prentice Hall PTR.

  5. Stauffer, E., & Hochwald, B. (2012). Low-complexity multi-stream space-time codes—Part I: Direct-sum codes and design criteria communications. IEEE Transactions on Communications, 60(1), 81–88.

    Article  Google Scholar 

  6. Hochwald, B. M., & Marzetta, T. L. (2000). Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading. IEEE Transactions on Information Theory, 46, 543–564.

    Article  MathSciNet  MATH  Google Scholar 

  7. Paulraj, A. J., Gore, D. A., Nabar, R. U., & Bolcskei, H. (2004). An overview of MIMO communications-a key to gigabit wireless. Proceedings of the IEEE, 92, 198–218.

    Article  Google Scholar 

  8. Choi, W., & Andrews, J. G. (2007). Downlink performance and capacity of distributed antenna systems in a multi-cell environment Wireless Communications. IEEE Transactions on Wireless Communications, 6(1), 69–73.

    Article  Google Scholar 

  9. Foschini, G. J. (1996). Layered space time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1, 41–59.

    Article  Google Scholar 

  10. Xianming, L., Xiaolin, W., Xinwei, G., Debin, Z., & Wen, G. (2012). Low bit-rate video coding via mode-dependent adaptive regression for wireless visual communications. In Proceedings of visual communications and image processing (VCIP) IEEE conference.

  11. Bolcskei, H., Gesbert, D., & Paulraj, A. J. (2002). On the capacity of OFDM-based spatial multiplexing systems. IEEE Transactions on Communications, 50, 225–234.

    Article  Google Scholar 

  12. Linglong, D., Zhaocheng, W., & Zhixing, Y. (2012). Time-frequency training OFDM with high spectral efficiency and reliable performance in high speed environments. IEEE Journal on Selected Areas in Communications, 30(4), 295–707.

    Google Scholar 

  13. Hu, S., Guan, Y. L., Bi, G., & Li, S. (2012). Cluster-based transform domain communication systems for high spectrum efficiency. IET Communications, 6(16), 2734–2739.

    Article  Google Scholar 

  14. Bolcskei, H., & Paulraj, A. J. (2000). Space-frequency coded broadband OFDM systems. In Wireless communications and networking conference-2000 (WCNC-2000) IEEE, pp. 1–6.

  15. Wyglinski, A. M., Labeau, F., & Kabal, P. (2005). Bit loading with BER-constraint for multicarrier systems. IEEE Transactions on Wireless Communications, 4, 1383–1387.

    Article  Google Scholar 

  16. Papandreou, N., & Antonakopoulos, T. (2008). Bit and power allocation in constrained multicarrier systems: The single-user case. EURASIP Journal on Advances in Signal Processing, 2008, 11.

    MATH  Google Scholar 

  17. Zeng, L., McGrath, S., & Cano, E. (2009). Rate maximization for multiband OFDM ultra wideband systems using adaptive power and bit loading algorithm. In Fifth advanced international conference on Telecommunications-2009 (AICT’09), pp. 369–374.

  18. Alhanafy, W., & Weiss, S. (2009). A new low-cost discrete bit loading using greedy power allocation. In The third mosharaka international conference on communications, computers and applications (MIC-CCA2009), 26–28 October, 2009.

  19. Shin, C., Park, H., Kang, J., & Nam, E. (2010). A per-stream coded bit loading algorithm for MIMO BIC-OFDM systems. In 2010 international ITG workshop on smart antennas (WSA), pp. 240–243.

  20. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  21. Odhah, N. A., Dessouky, M. I., Al-Hanafy, W. E., & Abd El-Samie, F. E. (2012). Low complexity precoded greedy power allocation algorithms for OFDM communication systems. Journal of Signal and Information Processing, 3, 185–191.

    Article  Google Scholar 

  22. Odhah, N. A., Dessouky, M. I., Al-Hanafy, W. E., & Abd El-Samie, F. E. (2012). Greedy Power Allocation Algorithm for proportional resource allocation in multi-User OFDM systems. In 29th national radio science conference (NRSC’29), Cairo University, Egypt.

  23. Odhah, N. A., Dessouky, M. I., Al-Hanafy, W. E., & Abd El-Samie, F. E. (2012). Per-spatial stream power allocation algorithms for single-user MIMO-OFDM wireless communication systems. In The 8th international conference on informatics and systems, INFOS’12, Cairo, Egypt.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathi E. Abd El-Samie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odhah, N.A., Hassan, E.S., Dessouky, M.I. et al. Adaptive Per-spatial Stream Power Allocation Algorithms for Single-User MIMO-OFDM Systems. Wireless Pers Commun 98, 1–31 (2018). https://doi.org/10.1007/s11277-017-4186-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4186-3

Keywords

Navigation