Skip to main content
Log in

Adaptive Cross-Layer-Based Packet Scheduling and Dynamic Resource Allocation for LTE-Advanced Relaying Cellular Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In 4G, LTE-Advanced specifies the key objective that the gigabit data rate for real-time video streaming can be transmitted under a high mobility scenario; thus, packet scheduling and radio resource management become the critical techniques that should be addressed effectively. Additionally, the mechanisms of relaying and the OFDMA coding have been certainly adopted in LTE-Advanced and IEEE 802.16 j/m for the purposes of increasing the wireless service coverage and improving signal quality of UEs nearing the cell boundaries. Several studies propose some improvements for the relaying-based packet scheduling, but suffer from long packet delay, high packet dropping probability moderate system capacity, and degrading QoS of real-time packet transmissions. This paper thus proposes an Adaptive LTE-Advanced cross-layer packet Scheduling (ALS) to guarantee real-time high-speed packet service for LTE-Advanced. ALS consists of two mechanisms: (1) Adaptive Reward Priority Scheduling: the cross layer-based adaptive packet scheduling at the MAC layer and (2) Dynamic Resource Allocation algorithm: the efficient radio resource allocation at the PHY layer. Numerical results demonstrate ALS outperforms the compared approaches in system capacity, packet dropping probability, average packet delay, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Genc, V., Murphy, S., Yu, Y., & Murphy, J. (2008). IEEE 802.16j relay-based wireless access networks: An overview. IEEE Wireless Communications, 15(5), 56–63.

    Article  Google Scholar 

  2. Ge, Y., Wen, S., Ang, Y.-H., & Liang, Y.-C. (2010). Optimal relay selection in IEEE 802.16j multihop relay vehicular networks. IEEE Transactions on Vehicular Technology, 59(5), 2198–2206.

    Article  Google Scholar 

  3. TR 36.913 Version 10.0.0. Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced). 3GPP, 2011.

  4. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Broadband Wireless Access Systems. IEEE 802.16m Standard, 2011.

  5. Li, Q., Lin, X., Zhang, J., & Roh, W. (2009). Advancement of MIMO technology in WiMAX: From IEEE 802.16d/e/j to 802.16m. IEEE Communications Magazine, 47(6), 100–107.

    Article  Google Scholar 

  6. Li, Q., Li, G., Lee, W., Lee, M.-I., Mazzarese, D., Clerckx, B., et al. (2010). MIMO techniques in WiMAX and LTE: A feature overview. IEEE Communications Magazine, 48(5), 86–92.

    Article  Google Scholar 

  7. Salem, M., Adinoyi, A., Rahman, M., Yanikomeroglu, H., Falconer, D., Kim, Y.-D., et al. (2010). An overview of radio resource management in relay-enhanced OFDMA-based networks. IEEE Communications Surveys & Tutorials, 12(3), 422–438.

    Article  Google Scholar 

  8. Yang, Y., Hu, H., Xu, J., & Mao, G. (2009). Relay technologies for WiMAX and LTE-advanced mobile systems. IEEE Communications Magazine, 47(10), 100–105.

    Article  Google Scholar 

  9. Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-advanced: Next-generation wireless broadband technology. IEEE Wireless Communications, 17(3), 10–22.

    Article  Google Scholar 

  10. Parkvall, S., Furuskär, A., & Dahlman, E. (2011). Evolution of LTE toward IMT-advanced. IEEE Communications Magazine, 49(2), 84–91.

    Article  Google Scholar 

  11. Capozzi, F., Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2012). Downlink packet scheduling in LTE cellular networks: Key design issues and a survey. IEEE Communications Surveys & Tutorials, 15(2), 678–700.

    Article  Google Scholar 

  12. Piro, G., Grieco, L. A., Boggia, G., Capozzi, F., & Camarda, P. (2011). Simulating LTE cellular systems: An open-source framework. IEEE Transactions on Vehicular Technology, 60(2), 498–513.

    Article  Google Scholar 

  13. Li, X., Li, B., Lan, B., Huang, M., & Yu, G. (2010). Adaptive PF scheduling algorithm in LTE cellular system. In International conference on information and communication technology convergence (ICTC) (pp. 501–504).

  14. Aniba, G., & Aïssa, S. (2007). Adaptive scheduling for MIMO wireless networks: Cross-layer approach and application to HSDPA. IEEE Transactions on Wireless Communications, 6(1), 259–268.

    Article  Google Scholar 

  15. Chaskar, H. M., & Madhow, U. (2003). Fair scheduling with tunable latency: A round-robin approach. IEEE/ACM Transactions on Networking, 11(4), 592–601.

    Article  Google Scholar 

  16. Choi, L.-U., & Murch, R. D. (2004). A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach. IEEE Transactions on Wireless Communications, 3(1), 20–24.

    Article  Google Scholar 

  17. Zhang, X., & Lee, J. (2008). Low complexity MIMO scheduling with channel decomposition using capacity upperbound. IEEE Transactions Communications, 56(6), 871–876.

    Article  Google Scholar 

  18. Salem, M., Adinoyi, A., Rahman, M., Yanikomeroglu, H., Falconer, D., & Kim, Y.-D. (2010). Fairness-aware radio resource management in downlink OFDMA cellular relay networks. IEEE Transactions on Wireless Communications, 9(5), 1628–1639.

    Article  Google Scholar 

  19. Zhang, L., Zheng, K., Wang, W., & Huang, L. (2011). Performance analysis on carrier scheduling schemes in the long-term evolution-advanced system with carrier aggregation. IET Communications, 5(5), 612–619.

    Article  Google Scholar 

  20. Wang, Y., Pedersen, K. I., Sørensen, T. B., & Mogensen, P. E. (2010). Carrier load balancing and packet scheduling for multi-carrier systems. IEEE Transactions on Wireless Communications, 9(5), 1780–1789.

    Article  Google Scholar 

  21. TR 36.912 Version 10.0.0. Feasibility study for Further Advancements for E-UTRA (LTE-Advanced). 3GPP, 2011.

  22. TS 23.203 Version 11.4.0. Policy and charging control architecture. 3GPP, 2011.

  23. Loa, K., Wu, C.-C., Sheu, S.-T., Yuan, Y., Chion, M., Huo, D., et al. (2010). IMT-advanced relay standards. IEEE Wireless Communications, 48(8), 40–48.

    Google Scholar 

  24. TS 36.211 Version 10.2.0. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation. 3GPP, 2011.

  25. TS 36.101 Version 10.4.0. Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception. 3GPP, 2011.

  26. Rinne, M., & Tirkkonen, O. (2010). LTE, the radio technology path towards 4G. Computer Communications, 33(16), 1894–1906.

    Article  Google Scholar 

  27. Akyildiz, I. F., Gutierrez-Estevez, D. M., & Reyes, E. C. (2010). The evolution to 4G cellular systems: LTE-advanced. Physical Communication, 3(4), 217–244.

    Article  Google Scholar 

  28. Institute of Communications and Radio-Frequency Engineering. (2011). Vienna LTE Simulators Link Level Simulator Documentation, v1.6r917. Vienna University of Technology.

  29. Li, Q., Zhu, S., & Cao, G. (2010). Routing in socially selfish delay tolerant networks. IEEE INFOCOM 2010, 3, 1–9.

    Google Scholar 

  30. Li, Q., Gao, W., Zhu, S., & Cao, G. (2012). A routing protocol for socially selfish delay tolerant networks. Ad Hoc Networks, 10(8), 1619–1632.

    Article  Google Scholar 

  31. Gao, W., Li, Q., Zhao, B., & Cao, G. (2009). Multicasting in delay tolerant networks: A social network perspective. In MobiHoc 2009 (pp. 299–308).

  32. Lu, R., Lin, X., Zhu, H., & Shen, X. (2010). Pi: A practical incentive protocol for delay tolerant networks. IEEE Transactions on Wireless Communications, 9(4), 1483–1493.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Science Council of Taiwan, ROC, under contracts of MOST-105-2221-E-224-031-MY2, NSC-101-2221-E-224-022-MY3 and NSC-102-2221-E-252-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-Jye Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, BJ., Liang, YH. & Chang, PY. Adaptive Cross-Layer-Based Packet Scheduling and Dynamic Resource Allocation for LTE-Advanced Relaying Cellular Communications. Wireless Pers Commun 96, 939–960 (2017). https://doi.org/10.1007/s11277-017-4212-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4212-5

Keywords

Navigation