Skip to main content

Advertisement

Log in

An Enhanced Analytical Model and Performance Evaluation of the IEEE 802.15.4e TSCH CA

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The Time Slotted Channel Hopping (TSCH) mechanism is created in the IEEE 802.15.4e amendment, to meet the need of Industrial Wireless Sensor Networks. It combines time slotted access and channel hopping with deterministic behavior. The mechanism offers two types of links: dedicated links and shared links. In order to reduce the probability of repeated collisions in shared links, the mechanism implemented a retransmission backoff algorithm, named TSCH Collision Avoidance (TSCH CA). In this article, we develop a two dimensional Markov chain model for the IEEE 802.15.4e TSCH CA mechanism, we take into account the deterministic behavior of this mechanism. In order to evaluate its performances, we estimate the stationary distribution of this chain. Then, we derive theoretical expressions of: collision probability, data packet loss rate, reliability, energy consumption, throughput, delay and jitter. Then, we analyze the impact of the number of devices sharing the link for a fixed network size under different traffic conditions. Finally, the accuracy of our theoretical analysis is validated by Monte Carlo simulation. It is shown that the performances of the IEEE 802.15.4e TSCH parameters are strongly related to the number of devices sharing the link.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chong, C. Y., & Kumar, S. P. (2003). Sensor networks: Evolution. Proceedings of the IEEE Opportunities and Challenges, 91(8), 1247–1256.

    Google Scholar 

  2. Yuce, Mehmet R., Ng, Peng Choong, & Khan, Jamil Y. (2008). Monitoring of physiological parameters from multiple patients using wireless sensor network. Journal of Medical Systems, 32(5), 433–441.

    Article  Google Scholar 

  3. Davenport, D. M., Ross, F. J., & Deb, B. (2009). Wireless propagation and coexistence of medical body sensor networks for ambulatory patient monitoring. In Sixth international workshop on wearable and implantable body sensor networks (pp. 41–45).

  4. Manes, G., Fantacci, R., Chiti, F., Ciabatti,M., Collodi, G., Di Palma,D., & Manes, A. (2007). Enhanced system design solutions for wireless sensor networks applied to distributed environmental monitoring. In 32nd IEEE conference on local computer networks (pp. 807–814).

  5. Willig, A. (2008). Recent and emerging topics in wireless industrial communications: A selection. IEEE Transactions on Industrial Informatics, 4(2), 102–124.

    Article  Google Scholar 

  6. Tiab, A., & Bouallouche, L. (2014). Routing in industrial wireless sensor networks: A survey. Chinese Journal of Engineering, 2014, 1–7.

    Article  Google Scholar 

  7. Miorandi, D., Uhlemann, E., Vitturi, S., & Willig, A. (2007). Guest editorial: Special section on wireless technologies in factory and industrial automation, part I. IEEE Transactions on Industrial Informatics, 3(2), 95–98.

    Article  Google Scholar 

  8. Platt, G., Blyde, M., Curtin, S., & Ward, J. (2005). Distributed wireless sensor networks and industrial control systems—A new partnership. In The second IEEE workshop on embedded networked sensors EmNetS-II (pp. 157, 158).

  9. IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements. Part 15.1: Wireless medium access control (MAC) and physical layer (PHY) specifications for wireless personal area networks (WPANs), IEEE Std., Rev. 2005, 14 June 2005.

  10. HART Field Communication Protocol Specifications. (2008). Revision 7.1, DDL Specifications, HART Communication Foundation Std.

  11. ISA. (2009). ISA100.11a: Wireless systems for industrial automation: Process control and related applications, International Society of Automation Std.

  12. IEEE. (1999). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11.

  13. IEEE Std 802.15.4. IEEE standard for local and metropolitan area networks Part 15.4: low-rate wireless personal area networks (LR-WPANs), (2011) (revision of IEEE std 802.15.4-2006)

  14. De Guglielmo, D., Anastasi, G., & Seghetti, A. (2014). Advances onto the internet of things, from IEEE 802.15.4 to IEEE 802.15.4e: A step towards the internet of things. Berlin: Springer International Publishing.

    Google Scholar 

  15. IEEE Std 802:15:4e. (2012). (Amendment to IEEE Std 802.15.4-2011)

  16. Pister K. S. J., & Doherty, P. L. (2008). TSMP: Time synchronized mesh protocol. In International symposium on distributed sensor networks, DSN.

  17. Accettura, N., & Piro, G. (2014). Optimal and secure protocols in the IETF 6TiSCH communication stack. In Industrial electronics (ISIE), 2014 IEEE 23rd international symposium on (pp. 1469–1474).

  18. Sikandar, A., & Kumar, S. (2014). Performance analysis of interference aware power control scheme for TDMA in wireless sensor networks. Advanced Computing, Networking and Informatics, V(2), 95–101.

    Article  Google Scholar 

  19. Gagliardi, Robert M. (1991). Satellite communications: Frequency-division multiple access. Dordrecht: Springer.

    Book  Google Scholar 

  20. Joo, S. S., Kim, B.S., Jun, J. A., & Pyo, C. S. (2010). Enhanced MAC for the bounded access delay. In International conference on information and communication technology convergence (ICTC) (pp. 423, 424).

  21. Palattella, M., Accettura, N., Dohler, M., Grieco, L., & Boggia, G. (2012). Trafic aware scheduling for reliable low-power multi-hop IEEE 802.15.4e networks. In IEEE 23rd International symposium on personal indoor and mobile radio communications (PIMRC), international symposium (pp. 327–332).

  22. Accettura, N., Palattella, M. R., Boggia, G., Grieco, L. A., & Dohler, M. (2013). Decentralized traffic aware scheduling for multi-hop low power Lossy networks in the internet of things. In IEEE 14th International symposium and workshops in world of wireless, mobile and multimedia networks (WoWMoM) (pp. 1–6).

  23. Capone, S., Brama, R., Ricciato, F., Boggia, G., & Malvasi, A. (2014). Modeling and simulation of energy efficient enhancements for IEEE 802.15. 4e DSME. In IEEE Wireless Telecommunications Symposium (WTS) (pp. 1–6).

  24. Dariz, L., Ruggeri, M., & Malaguti, G. (2013). A proposal for enhancement towards bidirectional quasi-deterministic communications using IEEE 802.15.4. In 21st Telecommunications Forum (TELFOR) (pp. 353–356).

  25. Reinhold, R., & Kays, R. (2013). Improvement of IEEE 802.15. 4a IR-UWB for time-critical industrial wireless sensor networks. In IEEE Wireless Days (WD), IFIP (pp. 1–4).

  26. Berger, A., Pichler, M., Haselmayr, W., & Springer, A. (2014). Energy efficient and reliable wireless sensor networks—An extension to IEEE 802.15.4e. EURASIP Journal on Wireless Communications and Networking, 2014(1), 1–26.

  27. Du, P., & Roussos, G. (2012). Adaptive time slotted channel hopping for wireless sensor networks. In Computer science and electronic engineering conference (CEEC) (pp. 29–34).

  28. Du, P., & Roussos, G. (2013). Spectrum-aware wireless sensor networks. In IEEE 24th International symposium on personal indoor and mobile radio communications (PIMRC) (pp. 2321–2325).

  29. Ouanteur, C., Aïssani, D., Bouallouche-Medjkoune, L., Yazid, M., & Castel-Taleb, H. (2016). Modeling and performance evaluation of the IEEE 802.15. 4e LLDN mechanism designed for industrial applications in WSNs. Wireless Networks, 1–16.

  30. Lee, J., & Jeong, W. C. (2012). Performance analysis of IEEE 802.15.4e DSME MAC protocol under WLAN interference. In IEEE International conference on ICT Convergence (ICTC) (pp. 741–746).

  31. Jeong, W. C., & Lee, J. (2012). Performance evaluation of IEEE 802.15.4e DSME MAC protocol for wireless sensor networks. In First IEEE workshop on enabling technologies for smartphone and internet of things (ETSIoT) (pp. 7–12).

  32. Paso, T., Haapola, J., & Linatti, J. (2013). Feasibility study of IEEE 802.15.4e DSME utilising IR-UWB and S-ALOHA. In IEEE 24th international symposium on personal indoor and mobile radio communications (PIMRC), international symposium (pp. 1863–1867).

  33. Chen, S., Sun, T., Yuan, J., Geng, X., Li, C., Ullah, S., et al. (2013). Performance analysis of IEEE 802.15.4e time slotted channel hopping for low- rate wireless networks. KSII Transactions on Internet and Information Systems (TIIS), 7(1), 1–21.

    Article  Google Scholar 

  34. De Guglielmo, D., Seghetti, A., Anastasi, G., & Conti, M. (2014). A performance analysis of the network formation process in IEEE 802.15. 4e TSCH wireless sensor/actuator networks. In IEEE symposium on computers and communication (ISCC) (pp. 1–6).

  35. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  MathSciNet  Google Scholar 

  36. Chatzimisios, P., Vitsas, V., & Boucouvalas, A. C. (2002).Throughput and delay analysis of IEEE 802.11 protocol. In IEEE 5th international workshop on networked appliances (pp. 168–174).

  37. Chatzimisios, P., Boucouvalas, A. C., & Vitsas, V. (2003). IEEE 802.11 packet delay-a finite retry limit analysis. In IEEE global telecommunications conference GLOBECOM ’03 (Vol. 2, pp. 950–954).

  38. Raptis, P., Banchs, A., & Paparrizos, K. (2006). A-simple-and-effective-delay-distribution-analysis-for-IEEE-802.11. In IEEE 17th international symposium on personal indoor and mobile radio communications (pp. 1–5).

  39. Yazid, M., Bouallouche-Medjkoune, L., Aïssani, D., & Ziane-Khodja, L. (2014). Analytical analysis of applying packet fragmentation mechanism on IEEE 802.11b DCF network in non ideal channel with infinite load conditions. Wireless Networks, 20(5), 917–934.

    Article  Google Scholar 

  40. Yazid, M., Ksentini, A., Bouallouche-Medjkoune, L., & Aïssani, D. (2014). Performance analysis of the TXOP sharing mechanism in the VHT IEEE 802.11 ac WLANs. IEEE Communications Letters, 18(9), 1599–1602.

    Article  Google Scholar 

  41. Yazid, M., Aïssani, D., Bouallouche-Medjkoune, L., Amrouche, N., & Bakli, K. (2015). Modeling and enhancement of the IEEE 802.11 RTS/CTS scheme in an error-prone channel. Formal Aspects of Computing, 27(1), 33–52.

    Article  Google Scholar 

  42. Park, T. R., Kim, T. H., Choi, J. Y., Choi, S., & Kwon, W. H. (2005). Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA/CA. IEEE Electronics Leters, 41(18), 1017–1019.

    Article  Google Scholar 

  43. Mišić, J., Shafi, S., & Mišić, V. B. (2006). Performance of a beacon enabled IEEE 802.15.4 cluster with downlink and uplink traffic. IEEE Transactions on Parallel and Distributed Systems, 17(4), 361–376.

    Article  Google Scholar 

  44. Pollin, S., Ergen, M., Ergen, S. C., Bougard, B., Van Der Perre, L., Catthoor, F., Moerman, I., Bahai, A., & Varaiya, P. (2006). Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. In Proceedings of GLOBECOM.

  45. Patro, R. K., Raina, M., Ganapathy, V., Shamaiah, M., & Thejaswi, C. (2007). Analysis and improvement of contention access protocol in IEEE 802.15.4 star network. In IEEE internatonal conference on mobile adhoc and sensor systems MASS (pp. 1–8).

  46. Shu, F., Sakurai, T., Zukerman, M., & Vu, H. L. (2007). Packet loss analysis of the IEEE 802.15.4 mac without acknowledgements. IEEE Communications Letters, 11(1), 79–81.

    Article  Google Scholar 

  47. Pollin, S., Ergen, M., Ergen, S. C., Bougard, B., Van der Perre, L., Moerman, I., et al. (2008). Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. IEEE Transactions on Wireless Communications, 7(9), 3359–3371.

    Article  Google Scholar 

  48. Sahoo, P. K., & Sheu, J. P. (2008). Modeling IEEE 802.15.4 based wireless sensor network with packet retry limits. In 5th ACM symposium on performance evaluation of wireless ad hoc sensor and ubiquitous networks (pp. 63–70).

  49. Wen, H., Chen, Z. J., & Dutkiewicz, E. (2009). An improved Markov model for IEEE 802.15.4 slotted CSMA/CA mechanism. Journal of Computer Science and Technology, 24(3), 495–504.

    Article  Google Scholar 

  50. Park, P., Di Marco, P., Soldati, P., Fischione, C., & Johansson, K. H. (2009). A generalized Markov chain model for effective analysis of slotted IEEE 802.15.4. In IEEE 6th international conference on mobile adhoc and sensor systems MASS (pp. 130–139).

  51. Wang, F., Li, D., & Zhao, Y. (2011). Analysis of CSMA/CA in IEEE 802.15.4, The Institution of Engineering and Technology. Communications, 5(15), 2187–2195.

    Google Scholar 

  52. Wang, F., Li, D., & Zhao, Y. (2012). On analysis of the contention access period of IEEE 802.15.4 MAC and its improvement. Wireless Personal Communications, 65(4), 955–975.

    Article  Google Scholar 

  53. Li, X., & Hunter, D. K. (2012). Four-dimensional Markov chain model of single-hop data aggregation with IEEE 802.15.4 in wireless sensor networks. Wireless Networks, 18(5), 469–479.

    Article  Google Scholar 

  54. Park, P., Di Marco, P., Fischione, C., & Johansson, K. H. (2013). Modeling and optimization of the IEEE 802.15.4 protocol for reliable and timely communications. IEEE Transactions on Parallel and Distributed Systems, 24(3), 550–564.

    Article  Google Scholar 

  55. Buratti, C., & Verdone, R. (2008). A mathematical model for performance analysis of IEEE 802.15.4 non-beacon enabled mode. In Wireless conference, 14th European IEE (pp. 1–7).

  56. Lauwens, B., Scheers, B., & Van de Capelle, A. (2010). Performance analysis of unslotted CSMA/CA in wireless networks. Telecommunication Systems, 44(1–2), 109–123.

    Article  Google Scholar 

  57. Tinka, A., Watteyne, T., & Pister, K. (2010). A decentralized scheduling algorithm for time synchronized channel hopping. Ad Hoc Networks (pp. 201–216).

  58. Vilajosana, X., Wang, Q., Chraim, F., Watteyne, T., Chang, T., & Pister, K. (2014). A realistic energy consumption model for TSCH. Networks, 14(2), 482–489.

    Google Scholar 

  59. Martinez, B., Vilajosana, X., Chraim, F., Vilajosana, I., & Pister, K. S. (2015). When scavengers meet industrial wireless. IEEE Transactions on Industrial Electronics, 62(5), 2994–3003.

    Article  Google Scholar 

  60. Hennebert, C., & Dos Santos, J. (2014). Security protocols and privacy issues into 6LoWPAN stack: a synthesis. IEEE Internet of Things Journal, 1(5), 384–398.

    Article  Google Scholar 

  61. Anwar, M., & Xia, Y. (2014). IEEE 802.15. 4e LLDN: Superframe configuration for networked control systems. In IEEE 33rd Chinese Control Conference (CCC) (pp. 5568–5573).

  62. Watteyne, T., Mehta, A., & Pister, K. (2009). Reliability through frequency diversity: why channel hopping makes sense. In Proceedings of the 6th ACM symposium on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks (pp. 116–123).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celia Ouanteur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouanteur, C., Bouallouche-Medjkoune, L. & Aïssani, D. An Enhanced Analytical Model and Performance Evaluation of the IEEE 802.15.4e TSCH CA. Wireless Pers Commun 96, 1355–1376 (2017). https://doi.org/10.1007/s11277-017-4241-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4241-0

Keywords

Navigation