Skip to main content

Advertisement

Log in

Performance Analysis of Downlink Linear Precoding in Massive MIMO Systems Under Imperfect CSI

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Demands of wireless data traffic, throughput, the number of wireless mobile connections and devices will always increase. In addition, the concern about energy consumption is also growing for wireless communication systems. Massive MIMO system is a new emerging research area to resolve these issues. In this paper, the performance of Massive MIMO downlink including linear precoding is evaluated. Spectral efficiency through achievable rate and energy efficiency through transmit power of ZF and MRT linear precoding is investigated under practical limitations, such as imperfect CSI, less complexity processing and inter user interference. Since ZF and MRT precoding can balance the system performance and complexity. Different channel estimation values are considered in order to compare the performance of these precoding techniques in the given system. The achievable rate and the downlink transmit power of ZF and MRT precoding techniques are derived, analyzed and compared under the same conditions and assumptions. Several scenarios are considered to investigate these performance parameters. It is found that when the ratio of BS antennas and number of users is large, ZF is better than MRT while when the ratio is quite small it makes MRT better than ZF for the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Index, C. V .N. (2014). Global mobile data traffic forecast update, 2013–2018. UR l:http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html. Visited on 14 May 2014.

  2. Marzetta, T. L. (2015). Massive mimo: An introduction. Bell Labs Technical Journal, 20, 11–22.

    Article  Google Scholar 

  3. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C., et al. (2014). What will 5g be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  4. Gesbert, D., Kountouris, M., Heath, R. W, Jr., Chae, C.-B., & Sälzer, T. (2007). Shifting the mimo paradigm. IEEE Signal Processing Magazine, 24(5), 36–46.

    Article  Google Scholar 

  5. Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.

    Article  Google Scholar 

  6. Qiao, D., Wu, Y., & Chen, Y. (2014). Massive mimo architecture for 5g networks: Co-located, or distributed?. In: 2014 11th international symposium on wireless communications systems (ISWCS). IEEE, pp. 192–197.

  7. Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5g. IEEE Communications Magazine, 52(2), 74–80.

    Article  Google Scholar 

  8. Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up mimo: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  9. Larsson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive mimo for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

    Article  Google Scholar 

  10. Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive mimo in the ul/dl of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31(2), 160–171.

    Article  Google Scholar 

  11. Shepard, C., Yu, H., Anand, N., Li, E., Marzetta, T., Yang, R., & Zhong, L. (2012). Argos: Practical many-antenna base stations. In Proceedings of the 18th annual international conference on Mobile computing and networking. ACM, pp. 53–64.

  12. Mohammed, S. K., & Larsson, E. G. (2013). Per-antenna constant envelope precoding for large multi-user mimo systems. IEEE Transactions on Communications, 61(3), 1059–1071.

    Article  Google Scholar 

  13. Hoydis, J., Ten Brink, S., & Debbah, M. (2011). Massive mimo: How many antennas do we need?. In 2011 49th Annual Allerton conference on communication, control, and computing (Allerton). IEEE, pp. 545–550.

  14. Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10(8), 2640–2651.

    Article  Google Scholar 

  15. Mohan, K.J., Gogoi, O., & Gogoi, P. (2014). Interference cancellation in massive mimo base stations with certain precoding techniques in faded environment. In 2014 international conference on signal processing and integrated networks (SPIN). IEEE, pp. 795–800.

  16. Huh, H., Caire, G., Papadopoulos, H. C., Ramprashad, S., et al. (2012). “Achieving” massive mimo” spectral efficiency with a not-so-large number of antennas. IEEE Transactions on Wireless Communications, 11(9), 3226–3239.

    Article  Google Scholar 

  17. Prabhu, H., Edfors, O., Rodrigues, J., Liu, L., & Rusek, F. (2014). A low-complex peak-to-average power reduction scheme for OFDM based massive mimo systems. In: 2014 6th international symposium on communications, control and signal processing (ISCCSP). IEEE, pp. 114–117.

  18. Björnson, E., Bengtsson, M., & Ottersten, B. (2014). Optimal multiuser transmit beamforming: A difficult problem with a simple solution structure. arXiv preprint arXiv:1404.0408.

  19. Lee, J., Han, J.-K., & Zhang, J. (2009). Mimo technologies in 3GPP ITE and ITE-advanced. EURASIP Journal on Wireless Communications and Networking, 2009, 3.

    Google Scholar 

  20. Selvan, V., Iqbal, M. S., & Al-Raweshidy, H. (2014). Performance analysis of linear precoding schemes for very large multi-user mimo downlink system. In 2014 fourth international conference on innovative computing technology (INTECH). IEEE, pp. 219–224.

  21. Lim, Y.-G., Chae, C.-B., & Caire, G. (2013). Performance analysis of massive mimo for cell-boundary users. arXiv preprint arXiv:1309.7817.

  22. Zhao, L., Zheng, K., Long, H., & Zhao, H. (2014). Performance analysis for downlink massive mimo system with ZF precoding. Transactions on Emerging Telecommunications Technologies, 25(12), 1219–1230.

    Article  Google Scholar 

  23. Parfait, T., Kuang, Y., & Jerry, K. (2014). Performance analysis and comparison of ZF and MRT based downlink massive mimo systems. In 2014 sixth international conference on ubiquitous and future networks (ICUFN). IEEE, pp. 383–388.

  24. Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser mimo systems. IEEE Transactions on Communications, 61(4), 1436–1449.

    Article  Google Scholar 

  25. Hoydis, J., Ten Brink, S., & Debbah, M. (2012). Comparison of linear precoding schemes for downlink massive mimo. In 2012 IEEE international conference on communications (ICC). IEEE, pp. 2135–2139.

  26. Zhang, Q., Jin, S., Wong, K.-K., Zhu, H., & Matthaiou, M. (2014). Power scaling of uplink massive mimo systems with arbitrary-rank channel means. IEEE Journal of Selected Topics in Signal Processing, 8(5), 966–981.

    Article  Google Scholar 

  27. Bjornson, E., Sanguinetti, L., Hoydis, J., & Debbah, M. (2014). Designing multi-user mimo for energy efficiency: When is massive mimo the answer?. In 2014 IEEE wireless communications and networking conference (WCNC). IEEE, pp. 242–247.

  28. Yin, X., Yu, X., Liu, Y., Tan, W., & Chen, X. (2013). Performance analysis of multiuser mimo system with adaptive modulation and imperfect CSI. In IET international conference on information and communications technologies (IETICT 2013). IET, pp. 571–576.

  29. Ngo, H. Q. (2015). Massive MIMO: Fundamentals and system designs (Vol. 1642). Linköping: Linköping University Electronic Press.

    Google Scholar 

  30. Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for Next Generation Wireless Systems. IEEE Communications Magazine52(2), 186–195.

    Article  Google Scholar 

  31. Nishimori, K., Cho, K., Takatori, Y., & Hori, T. (2001). Automatic calibration method using transmitting signals of an adaptive array for TDD systems. IEEE Transactions on Vehicular Technology, 50(6), 1636–1640.

    Article  Google Scholar 

  32. Rogalin, R., Bursalioglu, O. Y., Papadopoulos, H. C., Caire, G., & Molisch, A. F. (2013). Hardware-impairment compensation for enabling distributed large-scale mimo. In Information theory and applications workshop (ITA). IEEE, pp. 1–10.

  33. Frigyes, I., Bitó, J., & Bakki, P. (2008). Advances in mobile and wireless communications: Views of the 16th IST mobile and wireless communication summit. Berlin: Springer.

    MATH  Google Scholar 

  34. Madhow, U. (2008). Fundamentals of digital communication. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  35. Marzetta, T. L., & Hochwald, B. M. (2006). Fast transfer of channel state information in wireless systems. IEEE Transactions on Signal Processing, 54(4), 1268–1278.

    Article  Google Scholar 

  36. Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Massive mu-mimo downlink tdd systems with linear precoding and downlink pilots. In 2013 51st Annual Allerton conference on communication, control, and computing (Allerton). IEEE, pp. 293–298.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Israr.

Appendices

Appendix 1

The desired signal power \(S_k\), interference \(I_k\) and Noise \(n_k\) is

$$\begin{aligned} |S_k|^2= & {} \frac{P_d}{tr(\bar{{\mathbf {A}}} \bar{{\mathbf {A}}^H)}}\\ |I_k|^2= & {} P_d\sigma _e^2 \end{aligned}$$

and

$$\begin{aligned} |n_k|^2 = n = 1 \end{aligned}$$

By substituting the valuse of \(S_k, I_k\) and \(n_k\) in (13), the SINR of the kth user is given as

$$\begin{aligned} SINR_{k}^{zf_{csi}} = \frac{P_d}{tr(\bar{{\mathbf {A}}} \bar{{\mathbf {A}}^H)}} \left( \frac{1}{P\sigma _e^2 + 1}\right) \end{aligned}$$
(25)
$$\begin{aligned} SINR_{k}^{zf_{csi}} = \frac{P_d}{({P\sigma _e^2 + 1}){tr(\bar{{\mathbf {A}}}\bar{{\mathbf {A}}}^H)}} \end{aligned}$$
(26)

When the value of M and K is large [23], then

$$\begin{aligned} \frac{1}{tr({\mathbf {A}}{\mathbf {A}}^H)}\approx {\text{Diversity}}\, {\text{order}}\, {\text{of}} \,{\text{ZF}}\, {\text{precoding}} \end{aligned}$$

The diversity order measures the number of independent paths over which the data is received [23]

$$\begin{aligned} {\text{Diversity}}\, {\text{order}}\, {\text{of}} \,{\text{ZF}}\, {\text{precoding}} = {\alpha - 1} \end{aligned}$$

where \(\alpha = \frac{M}{K}\)

$$\begin{aligned} \therefore \frac{P_d}{tr(\bar{{\mathbf {A}}}\bar{{\mathbf {A}}^H)}} = \frac{(M - K) (1 - \sigma _e^2)P_d}{K} \end{aligned}$$
(27)

Putting the values of (27) in (26) and after some manipulations, we obtain the result of (9).

Appendix 2

Received Signal at the k th user is given as

$$\begin{aligned} y_k = \beta \bar{{\mathbf {h}}_k} \bar{{\mathbf {h}}_k^H} x_k + \sum ^k_{i=1,i\ne k} \beta \bar{{\mathbf {h}}_k} \bar{{\mathbf {h}}_i^H} x_i + \sum ^k_{i=1}\beta \bar{{\mathbf {h}}_i^H} {\mathbf {E}}_i x_i + n_k \end{aligned}$$
(28)

Therefore, SINR of MRT precoding under imperfect CSI is

$$\begin{aligned} SINR_k^{mrt_{csi}} = \frac{\beta ^{2} |{{\mathbf {h}}_k}{{\mathbf {h}}_k^H}|^2 (1-\sigma ^2) }{\beta ^2\left[ \sum ^k_{i=1,i\ne k} |{{\mathbf {h}}_k} {{\mathbf {h}}_i^H}|^2 (1-\sigma ^2) + \sigma ^2\right] + 1} \end{aligned}$$
(29)

where \('\beta '\) for imperfct CSI is given as

$$\begin{aligned} \beta = \sqrt{\frac{P_d}{MK (1-\sigma ^2)}} \end{aligned}$$
(30)

But from [36]

$$\begin{aligned} \frac{1}{K} \sum ^k_{i=1,i\ne k}|{\mathbf {h}}_k {\mathbf {h}}_i^H|^2 = {\mathbf {E}} {|{\mathbf {h}}_k {\mathbf {h}}_i^H|^2} = M \end{aligned}$$
(31)

and

$$\begin{aligned} {\mathbf {h}}_k {\mathbf {h}}_k^H = M \end{aligned}$$
(32)

Substituting (30), (31) and (32) in (29) and after some manipulations, we obtain the result of (11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Israr, A., Rauf, Z., Muhammad, J. et al. Performance Analysis of Downlink Linear Precoding in Massive MIMO Systems Under Imperfect CSI. Wireless Pers Commun 96, 2603–2619 (2017). https://doi.org/10.1007/s11277-017-4314-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4314-0

Keywords

Navigation