Skip to main content

Advertisement

Log in

Electrically Small Microstrip Patch Antenna Loaded with Spiral Resonator for Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper focuses on a new dual turn spiral resonator (DTSR) loaded electrically small microstrip patch antenna. The proposed DTSR loaded antenna is mounted on Rogers RT/Duroid 5880 tm substrate and numerically analyzed with electromagnetic solver. The resonant frequency of the antenna gets lowered with improved magnetic permeability of dielectric materials through metamaterial loading. The DTSR loaded antenna resonates at 14.76 GHz compared to unloaded simple microstrip patch antenna resonating at 27.44 GHz. The proposed antenna also satisfies the condition of Chu limit for being electrically small antenna with appreciable return loss and gain of 7.17 dB and fractional bandwidth is 7.96%. This antenna can be used for satellite communications. The full wave simulated resonant frequency of DTSR is compared with frequency derived from equivalent circuit of model. It is observed that the analytically calculated resonant frequency is in close agreement with full wave numerically analyzed frequency. The negative permeability of the DTSR is also plotted to depict the metamaterial behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics-USPEKHI, 10(4), 509–514.

    Article  Google Scholar 

  2. Engheta, N., & Ziolkowski, R. W. (2005). A positive future for double-negative metamaterial. IEEE Transactions on Microwave Theory and Techniques, 53(4), 1535–1556.

    Article  Google Scholar 

  3. Buell, K., Mosallaei, H., & Sarabandi, K. (2006). A substrate for small patch antennas providing tunable miniaturization factors. IEEE Transactions of Microwave Theory and Techniques, 54(1), 135–146.

    Article  Google Scholar 

  4. Engheta, N., & Ziolkowski, R. W. (2006). Metamaterial, physics and engineering explorations. New York: Wiley.

    Google Scholar 

  5. Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N., & Vincent, P. (2002). A metamaterial for directive emission. Physics Review Letters, 89(21), 213902.

    Article  Google Scholar 

  6. Majid, H. A., Rahim, M. K. A., & Masri, T. (2009). Microstrip antenna’s gain enhancement using left-handed metamaterial structure. Progress in Electromagnetics Research, 8, 235–247.

    Article  Google Scholar 

  7. Lim, S., Caloz, C., & Itoh, T. (2005). Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth. IEEE Transactions on Microwave Theory and Techniques, 53(1), 161–173.

    Article  Google Scholar 

  8. Wheeler, H. A. (1947). Fundamental limitations of small antennas. IRE Proceedings, 35(12), 1479–1484.

    Article  Google Scholar 

  9. Chu, L. J. (1948). Physical limitations on Omni-directional antennas. Journal of Applied Physics, 19(12), 1163–1175.

    Article  Google Scholar 

  10. Ziolkowski, R. W., & Erentok, A. (2006). Metamaterial based efficient electrically small antennas. IEEE Transactions on Antennas and Propagation, 54(7), 2113–2130.

    Article  Google Scholar 

  11. Ziolkowski, R. W., & Erentok, A. (2007). At and below the Chu limit: passive and active broad bandwidth metamaterial based electrically small antennas. IET Microwaves, Antennas and Propagation, 1(1), 116–128.

    Article  Google Scholar 

  12. Shelby, R. A., Smith, D. R., & Schultz, S. (2001). Experimental verification of a negative index of refraction. Science Magazine, 292, 77–79.

    Google Scholar 

  13. Joshi, J. G., Pattnaik, S. S., Devi, S., & Lohokare, M. R. (2010). Electrically small electrically small patch antenna loaded with metamaterial. IETE Journal of Research, 56(6), 373–379.

    Article  Google Scholar 

  14. Wu, B.-I., Wang, W., Pacheco, J., Chen, X., Grzegorczyk, T. M., & Kong, J. A. (2005). A study of using metamaterials as antenna substrate to enhance gain. Progress in Electromagnetic Research, 51, 295–328.

    Article  Google Scholar 

  15. Naqui, J., Coromina, J., Karami-Horestani, A., Fumeaux, C., & Martín, F. (2015). Angular displacement and velocity sensors based on coplanar waveguides loaded with S-shaped split ring resonators. Sensors, 15(5), 9628–9650.

    Article  Google Scholar 

  16. Sabah, C. (2010). Tunable metamaterial design composed of triangular split ring resonator and wire strip for S and C microwave bands. Progress in Electromagnetics Research B, 22, 341–357.

    Article  Google Scholar 

  17. Siddiqui, J. Y., Saha, C., & Antar, Y. M. M. (2014). Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics. IEEE Transactions on Antennas and Propagation, 62(8), 4015–4420.

    Article  Google Scholar 

  18. Rajni, R., & Marwaha, A. (2011). Analysis of magnetic resonance in metamaterial structure. In From excerpt from the proceedings of the 2011 COMSOL Conference, Bangalore.

  19. Rajni, R., & Marwaha, A. (2015). Magnetic resonance in spiral resonators. International Journal of Applied Engineering Research, 10(13), 33291–33295.

    Google Scholar 

  20. Rajni, R., & Marwaha, A. (2015). Resonance characteristics and effective parameters of new left hand metamaterial. TELKOMNIKA Indonesian Journal of Electrical Engineering, 15(3), 497–503.

    Google Scholar 

  21. Singh, R., Al-Naib, I. A. I., Martin, K., & Zhang, W. (2010). Asymmetric planar terahertz metamaterials. Optics Express, 18(12), 13044–13050.

    Article  Google Scholar 

  22. Bilotti, F., Toscan, A., & Vegni, L. (2007). Design of spiral and multiple split ring resonators for the realization of miniaturized metamaterial samples. IEEE Transactions on Antennas and Propagation, 55(8), 2258–2267.

    Article  Google Scholar 

  23. Bilotti, F., Toscan, A., Vegni, L., Aydin, K., Alici, K. B., & Ozbay, E. (2007). Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions. IEEE Transactions on Microwave Theory and Techniques, 55(12), 2865–2873.

    Article  Google Scholar 

  24. Ellstein, D., Wang, B., & Teo, K. H. (2012). Accurate Models for Spiral Resonators. In Microwave conference (EuMC), 42nd European (pp. 787–790).

  25. McLean, J. S. (1996). A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Transactions on Antennas and Propagation, 44(5), 672–676.

    Article  Google Scholar 

  26. Rajni, R., & Marwaha, A. (2016). CSC-SR structure loaded electrically small planar antenna. Applied Computational Electromagnetic Society Journal, 31(5), 591–598.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajni Rajni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajni, R., Marwaha, A. Electrically Small Microstrip Patch Antenna Loaded with Spiral Resonator for Wireless Applications. Wireless Pers Commun 96, 2621–2632 (2017). https://doi.org/10.1007/s11277-017-4315-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4315-z

Keywords

Navigation