Skip to main content
Log in

A Feasible Segment-by-Segment ALOHA Algorithm for RFID Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In the passive radio frequency identification systems, dynamic frame slotted ALOHA framework has been popularly deployed by the industry driven EPCGlobal C1G2 standard to solve tags collision problem, where tags collision is mainly caused by the mismatched frame length leading to simultaneous responding tags in one same time slot and one reader needs to continuously select the appropriate frame length for effectively identifying tags. Obviously, the throughput improvement comes at the expense of frequent adjustments leading to large computation load and consumption. In order to decrease the frame length adjustment times and catch hold of the satisfactory throughput, this paper proposes a segment-by-segment ALOHA algorithm, where one frame is composed of slot-segments and each slot-segment is composed of s L continuous time slots with three scenarios as collision occupant, empty occupant and singleton occupant. To count these three scenarios in n L slot-segments, the corresponding adjustment operations with exclusive estimator to deal with the unread tags is further introduced. Compared with the state-of-the-art ALOHA-based algorithm in slot-by-slot fashion, the proposed one dramatically decreases the frame length adjustment times and partly increases the identification speed up to 420 tags/s with the throughput around 36% which is very close to the theoretical maximum 36.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Enrique, V., Antonio, A., & Carlos, C. (2015). Evolution of RFID applications in construction: A literature review. Sensors, 15, 15988–16008. doi:10.3390/s150715988.

    Article  Google Scholar 

  2. EPC radio-frequency identity protocols, class-1 generation-2 UHF RFID protocol for communications at 860 MHz–960 MHz, Version 2.0.0, EPC Global, November 2013.

  3. ISO/IEC 18000-6:2010, Information technology–radio frequency identification for item management–Part 6: Parameters for air interface communications at 860 MHz to 960 MHz. International Organization for Standardization, April 2011.

  4. Chen, W. T., & Lin, G. H. (2006). An efficient anti-collision method for tag identification in a RFID system. IEICE Transactions on Communications, E89-B(12), 3386–3392. doi:10.1093/ietcom/e89-b.12.3386.

    Article  Google Scholar 

  5. Knerr, B., Holzer, M., Angerer, C., & Rupp, M. (2008). Slot-by-slot minimum squared error estimator for tags populations in FSA protocols. In Proceedings of 2nd international EURASIP workshop on RFID (pp. 1–13).

  6. Floerkemeier, C. (2006). Transmission control scheme for fast RFID object identification. In Proceedings 4th annual IEEE international conference pervasive computing and communications workshops (pp. 457–462). doi:10.1109/PERCOMW.2006.136.

  7. Chen, W. T., & Hung, L. G. (2006). An efficient scheme for multiple access in a RFID system. In 2006 international conference on wireless networks, (pp. 160–163).

  8. Alonso, J. V., Delgado, V. B., Lopez, E. E., & Gonzalez-Castano, F. J. (2011). Multi-frame maximum-likelihood tag estimation for RFID anti-collision protocols. IEEE Transactions Industrial Informatics, 7(3), 487–496. doi:10.1109/TII.2011.2158831.

    Article  Google Scholar 

  9. Su, W., Alchazidis, N. V., & Ha, T. T. (2010). Multiple RFID tags access algorithm. IEEE Transactions on Mobile computing, 9(2), 174–187. doi:10.1109/TMC.2009.106.

    Article  Google Scholar 

  10. Schoute, F. C. (1983). Dynamic frame length ALOHA. IEEE Transactions on Communications, 31(4), 565–568. doi:10.1109/TCOM.1983.1095854.

    Article  Google Scholar 

  11. Vogt, H. (2002) Efficient object identification with passive RFID tags. In Pervasive ‘02 proceedings of the first international conference on pervasive computing, London, UK (pp. 98–113). doi:10.1007/3-540-45866-2_9.

  12. Choi, S. S., & Kim, S. (2009). A dynamic framed slotted ALOHA algorithm using collision factor for RFID identification. IEICE Transactions on Communications, E92.B(3), 1023–1026. doi:10.1587/transcom.E92.B.

  13. Khandelwal, G., Lee, K., Yener, A., & Serbetli, S. (2007). ASAP: A MAC protocol for dense and time-constrained RFID systems. EURASIP Journal on Wireless Communications and Networking, 1, 1–13. doi:10.1155/2007/18730.

    Google Scholar 

  14. Chen, W. T. (2014). A fast anticollision algorithm for the EPCglobal UHF class-1 generation-2 RFID standard. IEEE Communication Letters, 18(9), 1519–1522. doi:10.1109/LCOMM.2014.2334317.

    Article  Google Scholar 

  15. Chen, W. T. (2014). A feasible and easy-to-implement anti-collision algorithm for the EPCglobal UHF class-1 generation-2 RFID protocol. IEEE Transaction on Automation Science and Engineering, 11(2), 485–491. doi:10.1109/TASE.2013.2257756.

    Article  Google Scholar 

  16. Chen, W. T. (2016). Optimal frame length analysis and an efficient anti-collision algorithm with early adjustment of frame length for RFID systems. IEEE Transactions on Vehicular Technology, 65(5), 3342–3348. doi:10.1109/TVT.2015.2441052.

    Article  Google Scholar 

  17. Chen, W. T. (2009). An accurate tag estimate method for improving the performance of an RFID anticollision algorithm based on dynamic frame length ALOHA. IEEE Transactions on Automation Science and Engineering. doi:10.1109/TASE.2008.917093.

    Google Scholar 

  18. Duan, L. T., Zhang, X. Y., Wang John, Z. Z., & Duan, F. (2016). A grouping-paralleling identification and authentication algorithm for RFID system in EPCglobal G2V2. Journal of Computational and Theoretical Nanoscience, 13(5), 3183–3196. doi:10.1166/jctn.2016.4973.

    Article  Google Scholar 

  19. Cook, S. A., & Reckhow, R. A. (1979). The relative efficiency of propositional proof systems. The Journal of Symbolic Logic, 44, 36–50. doi:10.2307/2273702.

    Article  MathSciNet  MATH  Google Scholar 

  20. Buss, S. (2015). Quasipolynomial size proofs of the propositional pigeonhole principle. Theoretical Computer Science, 576, 77–84. doi:10.1016/j.tcs.2015.02.005.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (61472271 and 61503273), Key Scientific and Technological Projects of Shanxi Province (20130321001-09 and 2007031129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Zhang, X., Wang, Z.J. et al. A Feasible Segment-by-Segment ALOHA Algorithm for RFID Systems. Wireless Pers Commun 96, 2633–2649 (2017). https://doi.org/10.1007/s11277-017-4316-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4316-y

Keywords

Navigation