Skip to main content
Log in

Performance Analysis of a Multi-layered SVD Based STBC System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multiple-Input Multiple-Output transmission systems using orthogonal frequency-division multiplexing is a key solution in wireless communications. The performance of MIMO-OFDM systems can be improved using coding schemes such as Space–Time Block Coding (STBC), Singular Value Decomposition (SVD) and Vertical Bell Labs Layered Space–Time Architecture (VBLAST). In this paper we present a (4 × 4) cascaded STBC–SVD multi-layered encoder structured in a VBLAST architecture. The STBC output streams are SVD encoded to improve symbol error rate (SER) performance. The introduced system achieves both spatial multiplexing and diversity gains simultaneously and maintains reliable SER performance. We study the effect of ordering the output streams of the STBC before applying the SVD encoding. We show that there is an optimum ordering that guarantees a minimum overall SER. MATLAB® simulations show that the proposed system performs better over other conventional VBLAST systems. Moreover, we show that better performance is not associated with an increase in the computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6, 311–335.

    Article  Google Scholar 

  2. Rajesh, G. V. (2009). Semi blind time domain equalization for MIMO-OFDM systems. M.Tech. thesis, Rourkela: National Institute of Technology.

  3. Yadav, S. (2013). Performance analysis of MIMO-OFDM (802.11n system) for WLAN channel model. International Journal of Engineering Research and Applications, 3, 946–949.

    Google Scholar 

  4. Hanzo, L., Akhtman, J., Wang, L., & Jiang, M. (2011). MIMO-OFDM for LTE, WIFI and WIMAX coherent versus non-coherent and cooperative turbo-transceivers (1st ed.). West Sussex: IEEE Press-Wiley.

    Google Scholar 

  5. Zerrouki, H., & Feham, M. (2010). High throughput of WIMAX MIMO-OFDM including adaptive modulation and coding. International Journal of Computer Science and Information Security, 7(1), 86–91.

    Google Scholar 

  6. Abdul Sattar, M. H. (2010). Performance analysis of MIMO-OFDM systems with focus on WiMAX. M.Eng. thesis, Sweden: Blekinge Institute of Technology.

  7. Wu, Z., & Gao, X. (2015). An efficient MIMO scheme with signal space diversity for future mobile communications. EURASIP Journal on Wireless Communications and Networking, 2015(87), 1–18.

    Google Scholar 

  8. Liu, M., Hélard, J., Hélard, M., & Crussière, M. (2015). Towards the next generation video broadcasting: Improved performance using distributed MIMO, wireless personal communications (pp. 1–12). Berlin: Springer.

    Google Scholar 

  9. Cortes, J., Rosales, C., & Rodriguez, D. (2014). MIMO channel capacity using antenna selection and water pouring. EURASIP Journal on Wireless Communications and Networking, 2014(228), 1–11.

    Google Scholar 

  10. Onubogu, O., Castro, K., Jayalath, D., & Suzuki, H. (2015). Experimental evaluation of the performance of 2 × 2 MIMO-OFDM for vehicle-to-infrastructure communications. EURASIP Journal on Wireless Communications and Networking, 2015(183), 1–19.

    Google Scholar 

  11. Dholakia, P., Kumar, S., & Vithalani, C. (2014). Performance analysis of 4 × 4 and 8 × 8 MIMO system, to achieve higher spectral efficiency in Rayleigh and Rician fading distributions. Wireless Personal Communications Journal, 79(1), 687–701.

    Article  Google Scholar 

  12. Jafarkhani, H. (2005). Space–time coding theory and practice (1st ed.). New York: Cambridge University Press.

    Book  MATH  Google Scholar 

  13. Siva Kumar Reddy, B., & Lakshmi, B. (2015). Improvement in the performance of WiMAX with channel equalizers and space time block coding techniques using simulink. Wireless Personal Communications Journal, 84(4), 2815–2833.

    Article  Google Scholar 

  14. Yu, X., Chen, X., Bi, G., & Rui, Y. (2013). Performance of orthogonal STBC-MIMO with variable power adaptive modulation and delayed feedback in Nakagami fading channels. Science China Information Sciences Journal, 56(10), 1–10.

    Article  MathSciNet  Google Scholar 

  15. Doufexi, A., Tameh, E., Molina, A., & Nix, A. (2004). Application of sectorised antennas and STBC to increase the capacity of hot spot WLANs in an interworked WLAN/3G network. IEEE Vehicular Technology Conference, 5, 2962–2966.

    Google Scholar 

  16. Golub, G., & Reinsch, C. (1970). Singular value decomposition and least squares solutions. Numerische Mathematik, 14(5), 403–420.

    Article  MathSciNet  MATH  Google Scholar 

  17. Fatani, I., Colin, M., Gharbi, M., Coudoux, F., Berbineau, M., & Gazalet, M. (2014). An SVD-aided efficient bit-loading algorithm for MIMO transmission over spatially correlated channels. Wireless Personal Communications Journal, 75(2), 1167–1185.

    Article  Google Scholar 

  18. Fitzpatrick, J. (2004). Simulation of a multiple input multiple output (MIMO) wireless system. M.Eng. thesis, Dublin: Dublin City University.

  19. Yu, S., Lee, E., & Song, H. (2015). A combination of STBC and SM scheme with iterative detection in LTE systems. Wireless Personal Communications Journal, 83(2), 1203–1211.

    Article  Google Scholar 

  20. Naguib, A. F., Seshadri, N., & Calderbank, A. R. (2000). Increasing the data rate over wireless channels. IEEE Signal Processing Magazine, 17(3), 76–92.

    Article  Google Scholar 

  21. Mao, T., & Motani, M. (2005). STBC-VBLAST for MIMO wireless communication systems. IEEE International Conference on Communications, 4, 2266–2270.

    Google Scholar 

  22. Zheng, L., & Tse, D. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple antenna channels. In IEEE Transactions on Information Theory.

  23. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication (1st ed.). New York: Cambridge University Press.

    Book  MATH  Google Scholar 

  24. Doufexi, A., Nix, A., & Beach, M. (2005) Combined spatial multiplexing and STBC to provide throughput enhancements to next generation WLANs. In IST Mobile and Wireless Communications Summit.

  25. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications SAC, 16, 1451–1458.

    Article  Google Scholar 

  26. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space–time block coding for wireless communications: Performance results. IEEE Journal on Selected Areas in Communications SAC, 17, 451–460.

    Article  Google Scholar 

  27. Doufexi, A., Prado, A., Armour, S., Nix, A., & Beach, M. (2003). Use of space time block codes and spatial multiplexing using TDLS channel estimation to enhance the throughput of OFDM based WLANs. IEEE Vehicular Technology Conference, 1, 704–708.

    Google Scholar 

  28. Salemdeeb, M., & Abu-Hudrouss, A. (2012). Performance and capacity comparison between hybrid BLAST-STBC, VBLAST and STBC systems. International Journal of Emerging Technology and Advanced Engineering, 2(10), 12–22.

    Google Scholar 

  29. Nory, R. (2002) Performance analysis of space–time coded modulation techniques using GBSB-MIMO channel models. M.Sc. Thesis, Virginia: Blacksburg University.

  30. Foschini, G. J. (1996). Layered space–time architectures for wireless communications in a fading environment when using multiple antennas. Bell Labs Technical Journal, 1(2), 41–59.

    Article  Google Scholar 

  31. Sellathurai, M., & Haykin, S. (2009). Space–time layered information processing for wireless communications (1st ed.). New York: Wiley.

    Book  Google Scholar 

  32. Golden, G. D., Foschini, J. G., Valenzuela, R. A., & Wolniansky, P. W. (1999). Detection algorithm and initial laboratory results using V-BLAST space–time communication architecture. Electronics Letters, 35(1), 14–15.

    Article  Google Scholar 

  33. Ng, S. X., Yeap, B. L., & Hanzo, L. (2005). Full-rate, full-diversity adaptive space time block coding for transmission over rayleigh fading channels. IEEE Vehicular Technology Conference, 2, 1210–1214.

    Google Scholar 

  34. Freitas, W., Cavalcanti, F., & Lopes, R. (2005). Hybrid transceiver schemes for spatial multiplexing and diversity in MIMO systems. IEEE Journal of Communication and Information Systems, 20(3), 63–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Osman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, M.S., Abuelenin, S.M., Soliman, H.Y. et al. Performance Analysis of a Multi-layered SVD Based STBC System. Wireless Pers Commun 96, 3113–3125 (2017). https://doi.org/10.1007/s11277-017-4343-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4343-8

Keywords

Navigation