Skip to main content
Log in

On Proposing Optimization Technique for Maximization of Throughput in Multicarrier Systems Based on CRNs

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

To maximize spectrum utilization in efficient manner, Cognitive Radio Networks CRNs are proposed. These networks have the ability to adapt its communication parameters to communicate concurrent using the same band with licensed system by using limited interference at primary users (PUs) while assuring it’s QOS and improvement Quality of Services (QoS) of Secondary Users (SUs). In this paper, improvements in QoS of SUs are achieved by maximizing the total system throughput in CRN. Then, the CRNs throughput maximization can be achieved by selecting the efficient Multicarrier (MCM) technique and using intelligent and logically power allocation strategy. Moreover, calculating the total system throughput in downlink CRN using Generalized Frequency Division Multiplexing (GFDM) and Orthogonal Frequency Division multiplexing (OFDM) modulation techniques will be made. Furthermore, simple and logic proposed optimization technique based on Fuzzy Logic (FL) algorithm will be applied for power allocation strategy to maximize throughput under different constraints such as, maximum transmit power at Access Point (AP) of SUs and interference threshold level at PU receiver to assuring its QOS. Also, system performance in downlink CRN with different number of PUs, SUs, and subcarriers will be investigated. Finally, the effect of the noise level on the system throughput under both constraints will be done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal of Selected Areas on Communications, 23(2), 201–220.

    Article  Google Scholar 

  2. Sakran, H., Shokair, M., Nasr, O., El-Rabaie, E. S., & El-Azm, A. A. (2012). Proposed relay selection scheme for physical layer security in cognitive radio networks. IET Communications, 6(16), 2676–2687.

    Article  MathSciNet  Google Scholar 

  3. Federal Communications Commission (2002). Spectrum policy task force report, (ET Docket No. 02-135), Tech. Rep., Nov. 2002.

  4. Li, Y., & Nosratinia, A. (2013). Spectrum sharing with distributed relay selection and clustering. IEEE Transactions on communications, 16, 53–62.

    Article  Google Scholar 

  5. Rohling, H. (2011). OFDM concepts for future communication systems (p. 254). Berlin Heidelberg: Springer.

    MATH  Google Scholar 

  6. Benaya, A. M., Shokair, M., El-Rabaie, E. -S., & Elkordy, M. F. (2015). Optimal power allocation for sensing-based spectrum sharing in MIMO cognitive radio network. Wireless Personal Communications, 82(4), 2695–2707.

    Article  Google Scholar 

  7. Alabbasi, A., Rezki, Z., & Shihada, B. (2015). Energy efficient resource allocation for cognitive radios: A generalized sensing analysis. IEEE Transactions on Wireless Communications, 14(5), 2455–2469.

    Article  Google Scholar 

  8. Saleh, M. M. (2005). Adaptive resource allocation in multiuser OFDM systems. Berlin: Spring.

    Google Scholar 

  9. Sadr, S., Anpalagan, A., & Raahemifar, K. (2009). Radio resource allocation algorithms for the downlink of multiuser OFDM communication systems. IEEE Communications Surveys and Tutorials, 11(3), 92–106.

    Article  Google Scholar 

  10. Qin, T., & Leung, C. (2007). Fair adaptive resource allocation for multiuser OFDM cognitive radio systems. In IEEE, Communications and Networking (pp. 115–119).

  11. Van De Beek, J., & Berggren, F. (2008). Out-of-band power suppression in OFDM. IEEE Communications Letters, 12(9), 609–611.

    Article  Google Scholar 

  12. Kim, H., Kim, J., Yang, S., Hong, M., & Shin, Y. (2008). An effective MIMO OFDM system for IEEE 802.22 WRAN channels. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(8), 821–825.

    Article  Google Scholar 

  13. Fettweis, G., Krondorf, M., & Bittner, S. (2009). GFDM—Generalized frequency division multiplexing. In Proceedings 69th IEEE Vehicular Technology Conference (VTC Spring’09), Barcelona, Spain, Apr. 2009.

  14. Tabakovic, Z., Grgic, S., & Grgic, M. (2009). Fuzzy logic power control in cognitive radio. Signals and Image Processing: IEEE Systems.

    Book  Google Scholar 

  15. Hwang, T., Yang, C., Wu, G., & Li, S. (2008). OFDM and its wireless applications: A survey. IEEE Transactions on Vehicular Technology, 58(4), 1673–1694.

    Article  Google Scholar 

  16. Michailow, N., Matthe, M., Gaspar, I. S., & Caldevilla, A. N. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications, 62(9), 3045–3061.

    Article  Google Scholar 

  17. Matthé, M. Michailow, N., Gaspar, I., & Fettweis, G. (2014). Influence of pulse shaping on bit error rate performance and out of band radiation of generalized frequency division multiplexing, in Submitted to: ICC’14—Workshop on 5G Technologies (ICC’14 WS-5G), Sydney, Australia, Jun. 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Rosas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosas, A.A., Shokair, M. & El-dolil, S.A. On Proposing Optimization Technique for Maximization of Throughput in Multicarrier Systems Based on CRNs. Wireless Pers Commun 96, 3817–3829 (2017). https://doi.org/10.1007/s11277-017-4352-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4352-7

Keywords

Navigation