Skip to main content
Log in

Low Complexity Capacity Maximizing Transmit Antenna Selection Schemes for Massive MIMO Wireless Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Recently massive MIMO systems have attracted a lot of attention. A serious limitation in implementing massive MIMO is the number of RF chains required, which is due to its high implementation cost and power consumption. Antenna selection is a wise remedy, that not only reduces the number of required RF chains, but also improves the system’s performance. In this work, two low complexity capacity-maximizing transmit antenna selection (TAS) schemes, one for low SNR region and one for medium to high SNR region, are proposed. It is shown that the proposed antenna selection schemes enhance the MIMO link’s capacity at low SNRs, and select only one antenna in more than \(90\%\) of channel realizations, which in terms of numbers of required RF chains is very promising. The performance of the proposed schemes are compared to an existing high performance greedy TAS technique in terms of average capacity and complexity. Finally, a close analytical approximation for average capacity of the proposed capacity-based subset selection scheme is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cai, Y., & de Lamare, R. C. (2013). Adaptive minimum BER reduced-rank linear detection for massive MIMO systems. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1–6).

  2. Winters, J. H., Salz, J., & Gitlin, R. D. (1994). The impact of antenna diversity on the capacity of wireless communication systems. IEEE Transactions on Communications, 42(2), 1740–1751.

    Article  Google Scholar 

  3. Datta, T., Kumar, N. A., Chockalingam, A., & Rajan, B. S. (2012). A novel MCMC based receiver for large-scale uplink multiuser MIMO systems. In Information Theory and Applications Workshop (ITA) (pp. 69–77).

  4. Hoydis, J., ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31(2), 160–172.

    Article  Google Scholar 

  5. Mahboob, S., Ruby, R., & Leung, V. (2012). Transmit antenna selection for downlink transmission in a massively distributed antenna system using convex optimization. In Proceedings of Seventh International Conference on Broadband, Wireless Computing, Communication and Applications (BWCCA), 2012 (pp. 228–233).

  6. Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  7. Attar, A., Li, H., & Leung, V. C. M. (2011). Green last mile: How fiber-connected massively distributed antenna systems can save energy. IEEE Wireless Communications, 18(5), 66–74.

    Article  Google Scholar 

  8. Li, H., Song, L., Zhu, D., & Lei, M. (2013). Energy efficiency of large scale MIMO systems with transmit antenna selection. In IEEE International Conference on Communications (ICC), 2013 (pp. 4641–4645).

  9. Sanayei, S., & Nosratinia, A. (2004). Antenna selection in MIMO systems. IEEE Communications Magazine, 42(10), 68–73.

    Article  MATH  Google Scholar 

  10. Gorokhov, A., Gore, D., & Paulraj, A. (2003). Performance bounds for antenna selection in MIMO systems. In Proceedings of IEEE International Conference on Communications, 2003. ICC ’03 (Vol. 5, pp. 3021–3025).

  11. Zhang, H., & Dai, H. (2004). Fast transmit antenna selection algorithms for MIMO systems with fading correlation. In Proceedings of 60th Vehicular Technology Conference, 2004. VTC2004-Fall. IEEE (Vol. 3, pp. 1638–1642).

  12. Sandhu, S., Nabar, R. U., Gore, D. A., & Paulraj, A. (2000). Near-optimal selection of transmit antennas for a MIMO channel based on shannon capacity. In Proceedings of Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, 2000 (Vol. 1, pp. 567–571).

  13. Gore, D. A., Nabar, R. U., & Paulraj, A. (2000). Selecting an optimal set of transmit antennas for a low rank matrix channel. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000. ICASSP ’00 (Vol. 5, pp. 2785–2788).

  14. Molisch, A. F., Win, M. Z., & Winters, J. H. (2003). Reduced-complexity transmit/receive-diversity systems. IEEE Transactions on Signal Processing, 51(11), 2729–2738.

    Article  MathSciNet  MATH  Google Scholar 

  15. Heath, R. W., & Paulraj, A. (2001). Antenna selection for spatial multiplexing systems based on minimum error rate. In Proceedings of IEEE International Conference on Communications. ICC 2001 (Vol. 7, pp. 2276–2280).

  16. Kim, T. M., Ghaderipoor, A., & Paulraj, A. (2012). Antenna selection and power combining for transmit beamforming in MIMO systems. In Proceedings of Global Communication Conference (GLOBECOM), 2012 IEEE (pp. 4600–4605).

  17. Lee, B. M., Choi, J. H., Bang, J. H., & Kang, B. C. (2013). An energy efficient antenna selection for large scale green MIMO systems. In IEEE International Symposium on Circuits and Systems (ISCAS), 2013 (pp. 950–953).

  18. Li, H., Song, L., & Debbah, M. (2014). Energy efficiency of large-scale multiple antenna systems with transmit antenna selection. IEEE Transactions on Communications, 62(2), 638–647.

    Article  Google Scholar 

  19. Jiang, C., & Cimini, L. J. (2012). Antenna selection for energy-efficient MIMO tranmission. IEEE Wireless Communication Letters, 1(6), 577–580.

    Article  Google Scholar 

  20. Gkizeli, M., & Karystinos, G. (2014). Maximum-SNR antenna selection among a large number of transmit antennas. IEEE Journal of Selected Topics in Signal Processing, 8(5), 891–901.

    Article  Google Scholar 

  21. Sanayei, S., & Nosratinia, A. (2007). Capacity of MIMO channels with antenna selection. IEEE Transactions on Information Theory, 53(11), 4356–4362.

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, Y., & Tao, X. (2015). Secrecy outage on transmit antenna selection with weighting errors at maximal-ratio combiners. IEEE Communications Letters, 19(4), 597–600.

    Article  Google Scholar 

  23. Sanayei, S., & Nosratinia, A. (2003). Asymptotic capacity gain of transmit antenna selection. In Proceedings of WNCG Symposium, Citeseer.

  24. Pualraj, A., Nabar, R., & Gore, D. (2005). Introduction to space-time wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

  25. Gharavi-Alkhansari, M., & Gershman, A. B. (2004). Fast antenna subset selection in MIMO systems. IEEE Transactions on Signal Processing, 52(2), 339–347.

    Article  MathSciNet  MATH  Google Scholar 

  26. Guimarães, A. A. P., & Cavalcante, C. C. (2012). An upper-bound on the ergodic capacity of Rayleigh-fading MIMO channels using majorization theory. In Simpósio Brasileiro de Telecomunicações.

  27. Papoulis, A., & Pillai, S . U. (2002). Probability, random variales and stochastic Processes. New York: McGraw-Hill, The University of California.

    Google Scholar 

  28. Szirmay-Kalos, L., & Márton, G. (1998). Worst-case versus average case complexity of ray-shooting. Computing, 61(2), 103–131.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Eslami.

Appendix

Appendix

Proof of Proposition 2:

\(\mathbf {B}_{i-1}\) has rank \(i-1\), while \(\mathbf {A}_i=\mathbf {b}_i\mathbf {b}_i^H\) has rank 1,

$$\begin{aligned} \begin{aligned} \lambda _{1}^{(\mathbf {A}_i)}&=\Vert \mathbf {b}_i\Vert _F^2,\\ \lambda _{k}^{(\mathbf {A}_i)}&=0, \,\,\,\,\,\,2 \le k \le N. \end{aligned} \end{aligned}$$
(18)

Assuming sorted eigenvalues (in descending order), i.e., \(\lambda _{i-1}^{\mathbf {B}_{i-1}}\) being the smallest non-zero eigenvalue, and in order to maximize the lower bound of Proposition 1, \(\det {(\frac{\rho }{i}\mathbf {B}_i)}\), it is straight forward to show that the only eigenvalue of \(\mathbf {A}_i\), \(\lambda ^{(\mathbf {A}_i)}_1\), should be added to the minimum eigenvalue of \(\mathbf {B}_{i-1}\), i.e., without loss of generality assuming sorted \(\lambda ^{(\mathbf {B}_i)}_k\)s is descending order,

$$\begin{aligned} \begin{aligned}&\max _{p}{\left[ \left( \lambda _1^{(\mathbf {B}_{i-1})}+\lambda _{p_1}^{(\mathbf {A}_i)}\right) \left( \lambda _2^{(\mathbf {B}_{i-1})}+\lambda _{p_2}^{(\mathbf {A}_i)}\right) \cdots \left( \lambda _{i-1}^{(\mathbf {B}_{i-1})}+\lambda _{p_{i-1}}^{\mathbf {A}_i}\right) \right] }\\&\quad = \lambda _1^{\mathbf {B}_{i-1}}\lambda _2^{\mathbf {B}_{i-1}}\cdots \lambda _{i-2}^{\mathbf {B}_{i-1}}\left( \lambda _{i-1}^{\mathbf {B}_{i-1}}+\lambda _1^{(\mathbf {A}_i)}\right) . \end{aligned} \end{aligned}$$
(19)

Hence, using Proposition 1, the following inequality is obtained

$$\begin{aligned} \begin{aligned} \frac{\rho }{i^{i-1}}\left[ \lambda _1^{\mathbf {B}_{i-1}}\lambda _2^{\mathbf {B}_{i-1}} \dots \left( \lambda _{i-1}^{\mathbf {B}_{i-1}}+\lambda _{1}^{\mathbf {A}_i}\right) \right]&\le \det {\left( \frac{\rho }{i}\left( \mathbf {B}_{i-1}+\mathbf {A}_i\right) \right) }\\&=\det {\left( \frac{\rho }{i}\mathbf {B}_{i}\right) }. \end{aligned} \end{aligned}$$
(20)

In order for \(\det {\left( \frac{\rho }{i}\mathbf {B}_i\right) }\) be and increasing function of i, its lower bound, obtained in (20) should be greater than \(\det {\left( \frac{\rho }{i-1}\mathbf {B}_{i-1}\right) }\), which results in

$$\begin{aligned} \begin{aligned}&\det {\left( \frac{\rho }{i-1}\mathbf {B}_{i-1}\right) } = \frac{\rho ^{i-1}}{(i-1)^{i-1}}\prod _{k=1}^{i-1}{\lambda _k^{(\mathbf {B}_{i-1})}} \\&\quad < (\frac{\rho }{i})^{i-1}\left[ \lambda _1^{\mathbf {B}_{i-1}}\lambda _2^{\mathbf {B}_{i-1}} \dots \lambda _{i-2}^{\mathbf {B}_{i-1}}\left( \lambda _{i-1}^{\mathbf {B}_{i-1}}+\lambda _{1}^{\mathbf {A}_i}\right) \right] , \end{aligned} \end{aligned}$$
(21)

which is further simplified to

$$\begin{aligned} \Vert \mathbf {b}_i\Vert _F^2>\left[ \frac{i^i}{(i-1)^i}-1\right] \lambda _{min}^{\mathbf {B}_{i-1}} \end{aligned}$$
(22)

where \(\lambda _{i-1}^{\mathbf {B}_{i-1}}\) and \(\lambda _{1}^{\mathbf {A}_i}\) have been replaced with \(\lambda _{min}^{\mathbf {B}_{i-1}}\) and \(\Vert \mathbf {b}_i\Vert _F^2\), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bemanali, S., Eslami, M. Low Complexity Capacity Maximizing Transmit Antenna Selection Schemes for Massive MIMO Wireless Communications. Wireless Pers Commun 96, 3873–3887 (2017). https://doi.org/10.1007/s11277-017-4355-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4355-4

Keywords

Navigation