Skip to main content

Advertisement

Log in

Multicomponent Chirp Signal Detection Based on Discrete Chirp-Fourier Transform

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper investigates the signal detection of multiple chirps based on the discrete chirp-Fourier transform (DCFT). The detection method based on signal energy is proposed and the detection performance is analyzed. Firstly, the relationship of signal energy in both the time and DCFT domain is analyzed. An important property is presented, that is, the total energy of the signal in the time domain is equal to the sum of energy along the direction of constant frequency in the DCFT domain. The detection decision threshold of the multicomponent chirp signal is derived in ideal noiseless environment. Secondly, by analyzing the characters of the additive independent identical distribution Gaussian white noise in the DCFT domain, the modified detection decision threshold of the multicomponent chirp signal is determined in noisy environment. Finally, the simulation results show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gao, Y. & Wang, K. et al. (2012). Estimating target-induced azimuth envelope for SAR image formation and feature extraction. In Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International. (pp. 5820–5823). IEEE.

  2. Wang, W. Q., & Cai, J. (2012). MIMO SAR using chirp diverse waveform for wide-swath remote sensing. IEEE Transactions on Aerospace and Electronic Systems, 48(4), 3171–3185.

    Article  Google Scholar 

  3. Chen, J. et al. (2013) ISAR imaging of multiple moving targets using signals separation. In Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC). (pp. 1156–1159). IEEE.

  4. Zheng, J., Su, T., Zhang, L., et al. (2014). ISAR imaging of targets with complex motion based on the chirp rate–quadratic chirp rate distribution. IEEE Transactions on Geoscience & Remote Sensing, 52(11), 7276–7289.

    Article  Google Scholar 

  5. Ye, Y., Ying, F., & Qingfu, L. (2009) Detection and parameter estimation of multicomponent LFM signals based on Hilbert-Huang Hough transform. In Asia-Pacific Conference on Computational Intelligence and Industrial Applications, 2009. PACIIA (Vol. 1 pp. 476–479). IEEE.

  6. Bi, G., Li, X., & See, C. M. S. (2011). LFM signal detection using LPP-Hough transform. Signal Processing, 91(6), 1432–1443.

    Article  MATH  Google Scholar 

  7. Wood, J. C., & Barry, D. T. (1994). Radon transformation of time-frequency distributions for analysis of multicomponent signals. IEEE Transactions on Signal Processing, 42(11), 3166–3177.

    Article  Google Scholar 

  8. Li, W. (1987). Wigner distribution method equivalent to dechirp method for detecting a chirp signal. IEEE Transactions on Acoustics, Speech and Signal Processing, 35(8), 1210–1211.

    Article  Google Scholar 

  9. Wood, J. C., & Barry, D. T. (1994). Linear signal synthesis using the Radon–Wigner transform. IEEE Transactions on Signal Processing, 42(8), 2105–2111.

    Article  Google Scholar 

  10. Barbarossa, S. (1995). Analysis of multicomponent LFM signals by a combined Wigner–Hough transform. IEEE Transactions on Signal Processing, 43(6), 1511–1515.

    Article  Google Scholar 

  11. Xia, Y., Piao, S. & Fu, Y. (2009) Combination of WVD with TRM on detection of LFM signal in inhomogeneous medium. In 4th IEEE Conference on Industrial Electronics and Applications, 2009. ICIEA. (pp. 3864–3867). IEEE.

  12. Wang, Q., Pepin, M., Beach, R. J., et al. (2012). SAR-based vibration estimation using the discrete fractional Fourier transform. IEEE Transactions on Geoscience and Remote Sensing, 50(10), 4145–4156.

    Article  Google Scholar 

  13. Saxena, R., & Singh, K. (2013). Fractional Fourier transform: A novel tool for signal processing. Journal of the Indian Institute of Science, 85(1), 11.

    Google Scholar 

  14. Shen, L., Yin, Q., et al. (2013). Linear FM signal parameter estimation using STFT and FRFT. Chinese Journal of Electronics, 22(2), 301–307.

    Google Scholar 

  15. Wu, Y. J., Fu, G., & Zhu, Y. M. (2014). LFM signal detection method based on fractional fourier transform. Advanced Materials Research, 989, 4001–4004.

    Article  Google Scholar 

  16. Hao, H. (2013). Multi component LFM signal detection and parameter estimation based on EEMD–FRFT. Optik-International Journal for Light and Electron Optics, 124(23), 6093–6096.

    Article  Google Scholar 

  17. Xia, X. G. (2000). Discrete chirp-Fourier transform and its application to chirp rate estimation. IEEE Transactions on Signal Processing, 48(11), 3122–3133.

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, P., Liu, Z., & Jiang, W. L. (2015). Parameter estimation of multi-component chirp signals based on discrete chirp Fourier transform and population Monte Carlo. Signal, Image and Video Processing, 9(5), 1137–1149.

    Article  Google Scholar 

  19. Bouchikhi, A., Boudraa, A. O., Cexus, J. C., et al. (2014). Analysis of multicomponent LFM signals by Teager Huang–Hough transform. IEEE Transactions on Aerospace and Electronic Systems, 50(2), 1222–1233.

    Article  Google Scholar 

  20. Fan, P. & Xia, X. G. (2000). A modified discrete chirp-Fourier transform scheme. In 5th International Conference on Signal Processing Proceedings, 2000. WCCC-ICSP. (Vol. 1, pp. 57–60). IEEE.

  21. Fan, P., & Xia, X. G. (2001). Two modified discrete chirp Fourier transform schemes. Science in China Series: Information Sciences, 44(5), 329–341.

    MathSciNet  MATH  Google Scholar 

  22. Sun, H., Guo, X., Gu, H., et al. (2003). Modified discrete chirp-Fourier transform and its application to SAR moving target detection. Acta Electronica Sinica, 31(1), 25–28.

    Google Scholar 

  23. Junxian, L., Pingping L. & Jiexin, P. (2005). Doppler frequency parameters estimation for SAR imaging using a modified discrete chirp-Fourier transform. In IEEE International Conference on Mechatronics and Automation, 2005. (Vol. 2, pp. 649–652). IEEE.

  24. Penglang, G. Y. M. S. (2008). Circularly shifting discrete chirp-Fourier transform. Journal of Electronics and Information Technology, 8(30), 1882–1885.

    Google Scholar 

  25. Aceros-Moreno, C. A. & Rodriguez, D. (2005) Fast discrete chirp Fourier transforms for radar signal detection systems using cluster computer implementations. In 48th Midwest Symposium on Circuits and Systems, 2005. (pp. 1047–1050). IEEE.

  26. Bin, L. H. T. (2007). A fast DCFT algorithm for parameter estimation of LFM signal. Signal Processing, 2, 004.

    Google Scholar 

  27. Horai, M., Kobayashi, H., Nitta, T. G. (2014). Chirp signal transform and its properties. Journal of Applied Mathematics, 2014, 1–9. doi:10.1155/2014/161989.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. This research was supported by the National Natural Science Foundation of China under Grant No. 61271299,China Postdoctoral Science Foundation funded project under Grant No. 2014M562372 and the 111 Project under Grant No. B08038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, B., Guo, Z. et al. Multicomponent Chirp Signal Detection Based on Discrete Chirp-Fourier Transform. Wireless Pers Commun 96, 4385–4397 (2017). https://doi.org/10.1007/s11277-017-4392-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4392-z

Keywords

Navigation