Skip to main content
Log in

An Opportunistic Source Selection Spectrum Sharing Protocol for Overlay Cognitive Two-Way Relaying System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, an overlay two-way relaying spectrum sharing protocol is proposed by employing an opportunistic source selection strategy. In this protocol, a secondary user acts as a relay and allocates a fraction of its transmit power to assist two-way communication between two primary users (PUs), thus, gaining spectrum sharing as long as without degrading the primary system performance. Moreover, to exploit the multiuser diversity inherent in the multiuser primary systems, the two PUs transmit their own messages in an opportunistic manner, depending on the instantaneous channel conditions. Specifically, at each transaction, only one of the PUs is selected for transmission such that the instantaneous mutual information on the whole primary network is maximized and as a result, the multiuser diversity gain is achieved by the primary system. Then, we derive the exact closed-form outage probabilities for both the primary and secondary systems. To gain more insights, closed-form asymptotic outage probability expressions are also derived. Based on the approximations, we further obtain analytical results on the diversity order of the primary system and the power-allocation threshold above which the spectrum sharing is allowed for secondary transmission. Numerical results are presented to verify our analysis and highlight the advantages of our proposed scheme compared to another two-phase spectrum sharing protocol based on analog network coding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note that this is equivalent to the conventional one-way cooperative communication.

  2. Note that only one traffic flow is supported in each transaction for the primary system of the considered protocol, therefore, for a target primary system rate \({R_{P}}\), the transmission rate of each primary user must be \(R_{P}\), rather than \(R_{P}{/}2\). More details can be found in [21, 23].

  3. Since A and B are equivalent primary terminals, it is fair to set the target rate of each terminal as \(R_P/2\) [15, 21, 23]. Therefore, we set \(R_1 = R_2 = Rp/2\) for each PU in the DT protocol.

  4. It should be noted that both primary users involve each transaction in DT scheme without spectrum sharing, while only one primary user is selected to participate in each transaction for the CR-OSS protocol. For the DT scheme, , we set the transmit power of each primary user in the DT transmission is a half of that in the CR-OSS protocol for simplicity, i.e., \({P_1} = {P_2} = {P_P}/2\). Therefore, irrespective of the protocols, the total power consumed by the primary user is equal to \({P_P}\) for each transaction.

  5. Note that in our proposed protocol, if \(x_A\) can not be decoded at C in the first phase, i.e., \({R_{AC}} < {R_P}\) , C will remain idle in the next phase.

References

  1. Mitola, J., & Maguire, G. Q, Jr. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  2. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  3. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  4. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  5. Han, Y., Pandharipande, A., & Ting, S. H. (2008). Cooperative spectrum sharing via controlled amplify-and-forward relaying. In IEEE 19th international symposium on personal, indoor and mobile radio communications, 2008. PIMRC 2008 (pp. 1–5). IEEE.

  6. Han, Y., Pandharipande, A., & Ting, S. H. (2009). Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Transactions on Wireless Communications, 8(10), 4945–4950.

    Article  Google Scholar 

  7. Li, Q., Ting, S. H., Pandharipande, A., & Han, Y. (2011). Cognitive spectrum sharing with two-way relaying systems. IEEE Transactions on Vehicular Technology, 60(3), 1233–1240.

    Article  Google Scholar 

  8. Wang, R., Tao, M., & Liu, Y. (2013). Optimal linear transceiver designs for cognitive two-way relay networks. IEEE Transactions on Signal Processing, 61(4), 992–1005.

    Article  Google Scholar 

  9. Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  10. Rankov, B., & Wittneben, A. (2007). Spectral efficient protocols for half-duplex fading relay channels. IEEE Journal on Selected Areas in Communications, 25(2), 379–389.

    Article  Google Scholar 

  11. Zhang, S., Liew, S. C., & Lam, P. P. (2006). Hot topic: Physical-layer network coding. In Proceedings of the 12th annual international conference on Mobile computing and networking (pp. 358–365).

  12. Katti, S., Rahul, H., Hu, W., Katabi, D., Mdard, M., & Crowcroft, J. (2008). XORs in the air: Practical wireless network coding. IEEE/ACM Transactions on Networking (TON), 16(3), 497–510.

    Article  Google Scholar 

  13. Katti, S., Gollakota, S., & Katabi, D. (2007). Embracing wireless interference: Analog network coding. ACM SIGCOMM Computer Communication Review, 37(4), 397–408.

    Article  Google Scholar 

  14. Zhang, S., Liew, S. C., & Lu, L. (2008). Physical layer network coding schemes over finite and infinite fields. In Global telecommunications conference, 2008. IEEE GLOBECOM 2008(pp. 1–6).

  15. Kim, S. J., Mitran, P., & Tarokh, V. (2008). Performance bounds for bidirectional coded cooperation protocols. IEEE Transactions on Information Theory, 54(11), 5235–5241.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hyadi, A., Driouch, E. M., Ajib, W., & Alouini, M. S. (2013). Overlay cognitive radio systems with adaptive two-way relaying. In Global communications conference (GLOBECOM)(pp. 937–942).

  17. Duy, T. T., & Kong, H. Y. (2013). Performance analysis of two-way hybrid decode-and-amplify relaying scheme with relay selection for secondary spectrum access. Wireless Personal Communications, 69(2), 857–878.

    Article  Google Scholar 

  18. Yang, L., Alouini, M. S., & Qaraqe, K. (2012). On the performance of spectrum sharing systems with two-way relaying and multiuser diversity. IEEE Communications Letters, 16(8), 1240–1243.

    Article  Google Scholar 

  19. Yadav, S., & Upadhyay, P. (2014). Performance analysis of cognitive spectrum sharing with time division broadcast protocol. IEEE Communications Letters, 18(2), 305–308.

    Article  Google Scholar 

  20. Li, Y., Long, H., Peng, M., & Wang, W. (2014). Spectrum sharing with analog network coding. IEEE Transactions on Vehicular Technology, 63(4), 1703–1716.

    Article  Google Scholar 

  21. Viswanath, P., Tse, D. N. C., & Laroia, R. (2002). Opportunistic beamforming using dumb antennas. IEEE Transactions on Information Theory, 48(6), 1277–1294.

    Article  MathSciNet  MATH  Google Scholar 

  22. Yi, Z., & Kim, I. M. (2009). An opportunistic-based protocol for bidirectional cooperative networks. IEEE Transactions on Wireless Communications, 8(9), 4836–4847.

    Article  Google Scholar 

  23. Liu, P., & Kim, I. M. (2010). Performance analysis of bidirectional communication protocols based on decode-and-forward relaying. IEEE Transactions on Communications, 58(9), 2683–2696.

    Article  Google Scholar 

  24. Liu, P., Gazor, S., & Kim, I. M. (2013). An opportunistic protocol employing independent codebooks for bidirectional cooperative networks. IEEE Transactions on Vehicular Technology, 62(2), 902–908.

    Article  Google Scholar 

  25. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). Amsterdam: Elsevier.

    MATH  Google Scholar 

Download references

Acknowledgements

The research is partially supported by research grants from the  Chinese NSF project (61372078), Guangdong NSF project (2014A030313549), the Shenzhen NSF project (JCYJ20160226192223251), the Key Project of Department of Education of Guangdong Province (2015KTSCX121),  Foundation of Shenzhen City (KQCX20140509172609163),   Natural Science Foundation of Shenzhen University (00002501), and  the Science and Technology Program of Shaoguan City of China (SK20157202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Zhang.

Appendices

Appendix 1: Proof for Theorem 1

Using the law of total probability, we can write (7) as follows

$$\begin{aligned} \begin{array}{l} P_{CR - OSS}^{PU} = {P_r}\left( {Z< \frac{{{\varTheta _p}}}{{{\eta _p}}},max(X,Y)< \frac{{{\varTheta _p}}}{{{\eta _p}}} } \right) \\ \\ +\,{P_r}\left( {{\eta _p}Z + \frac{{\alpha {\eta _s}max(X,Y) }}{{(1 - \alpha ){\eta _s}max(X,Y) + 1}}< {\varTheta _p},\frac{{{\varTheta _p}}}{{{\eta _p}}}< \min (X,Y)< max(X,Y) } \right) \\ \\ +\,{P_r}\left( {{\eta _p}Z + \frac{{\alpha {\eta _s}\min (X,Y)}}{{(1 - \alpha ){\eta _s}\min (X,Y) + 1}}< {\varTheta _p},\min (X,Y)< \frac{{{\varTheta _p}}}{{{\eta _p}}} < max(X,Y) } \right) \\ \\ = P_{out}^{ 11} + P_{out}^{ 21} + P_{out}^{ 22} + P_{out}^{ 31} + P_{out}^{ 32} \end{array} \end{aligned}$$
(27)

where

$$\begin{aligned} P_{out}^{ 11}= {P_r}\left( {Z< \frac{{{\varTheta _p}}}{{{\eta _p}}},max(X,Y) < \frac{{{\varTheta _p}}}{{{\eta _p}}} } \right) \end{aligned}$$
(28)
$$\begin{aligned} P_{out}^{ 21}={P_r}\left( {{\eta _p}Z + \frac{{\alpha {\eta _s}Y }}{{(1 - \alpha ){\eta _s}Y + 1}}< {\varTheta _p},\frac{{{\varTheta _p}}}{{{\eta _p}}}< X < Y,Y > X } \right) \end{aligned}$$
(29)
$$\begin{aligned} P_{out}^{ 22}={P_r}\left( {{\eta _p}Z + \frac{{\alpha {\eta _s}X }}{{(1 - \alpha ){\eta _s}X + 1}}< {\varTheta _p},\frac{{{\varTheta _p}}}{{{\eta _p}}}< Y < X,X > Y } \right) \end{aligned}$$
(30)
$$\begin{aligned} P_{out}^{ 31}={P_r}\left( {{\eta _p}Z + \frac{{\alpha {\eta _s}Y}}{{(1 - \alpha ){\eta _s}Y + 1}}< {\varTheta _p},Y< \frac{{{\varTheta _p}}}{{{\eta _p}}} <\,X,X > Y } \right) \end{aligned}$$
(31)
$$\begin{aligned} P_{out}^{ 32}= {P_r}\left( {{\eta _p}Z + \frac{{\alpha {\eta _s}X}}{{(1 - \alpha ){\eta _s}X + 1}}< {\varTheta _p},X< \frac{{{\varTheta _p}}}{{{\eta _p}}} < Y,Y > X } \right) \end{aligned}$$
(32)

Since X, Y, and Z are independent exponential random variables, the term \(P_{out}^{11}\) can be straightforwardly derived as

$$\begin{aligned} \begin{array}{l} P_{out}^{11} = \left( {1 - \exp ( - {\lambda _0}\frac{{{\varTheta _p}}}{{{\eta _p}}})} \right) \left( {1 - \exp ( - {\lambda _0}\frac{{{\varTheta _p}}}{{{\eta _p}}})} \right) \left( {1 - \exp ( - {\lambda _0}\frac{{{\varTheta _p}}}{{{\eta _p}}})} \right) \end{array} \end{aligned}$$
(33)

In the following, we will show the derivations of other terms in (27), i.e., \(P_{out}^{21}\), \(P_{out}^{22}\), \(P_{out}^{31}\), and \(P_{out}^{31}\).

1.1 Derivations of \(P_{out}^{21}\) and \(P_{out}^{22}\)

Let us come to \(P_{out}^{21}\) first. With some manipulations, \(P_{out}^{21}\) can be simplified as

$$\begin{aligned} P_{out}^{21} = {P_r}\left( {Z\,<\,f(X), \frac{{{\varTheta _p}}}{{{\eta _p}}}\,<\,Y\,<\,X } \right) \end{aligned}$$
(34)

where \(f(\theta ) = {{\left( {{\varTheta _p} - \frac{{\alpha {\eta _s}\theta }}{{(1 - \alpha ){\eta _s}\theta + 1}}} \right) } /{{\eta _p}}}, \theta \in \{ X,Y\}\). Before the calculation of \(P_{out}^{21}\), what should be done is to determine the integral region for \(P_{out}^{21}\). Let us come to the first condition in \(P_{out}^{21}\), i.e., \(Z < f(X)\) . To determine the integral in (29), it is important to see that

$$\begin{aligned} f(X)\left\{ \begin{array}{l}> 0, 0< \alpha< {{{\varTheta _p}}/{(1 + {\varTheta _p})}}\\> 0, \alpha> {{{\varTheta _p}}/{(1 + {\varTheta _p})}} and 0< X< \xi \\ < 0, \alpha> {{{\varTheta _p}}/{(1 + {\varTheta _p})}} and X > \xi \end{array} \right. \end{aligned}$$
(35)

where \(\xi = \frac{{{\varTheta _p}}}{{[(1 + {\varTheta _p})\alpha - {\varTheta _p}]{\eta _s}}}\).

Since Z is a nonnegative random variable, the value of X must make sure that \(f(X) \ge 0\) , otherwise \(P_{out}^{ 21} = 0\) if \(f(X) < 0\) . Moreover, the second condition in \(P_{out}^{21}\) , i.e., \({{{\varTheta _p}}/{{\eta _p}}}< Y < X\) should be also satisfied. Denote \(G_{21}^{}(x,y,z)\) as the integral region for \(P_{out}^{21}\), and after some simple analysis, \(G_{21}^{}(x,y,z)\) can be obtained as follows

$$\begin{aligned} \begin{array}{l} G_{21}^{}(x,y,z) = \left\{ \begin{array}{ll} \{ 0 < Z < f(X),\frac{{{\varTheta _p}}}{{{\eta _p}}} < Y < X\}, & \quad 0 < \alpha < \frac{{{\varTheta _p}}}{{1 + {\varTheta _p}}}\\ \{ 0 < Z < f(X),\frac{{{\varTheta _p}}}{{{\eta _p}}} < Y < X < \xi \}, & \quad \frac{{{\varTheta _p}}}{{1 + {\varTheta _p}}} < \alpha < \frac{{{{{\eta _p}}/ {{\eta _s}}} + {\varTheta _p}}}{{1 + {\varTheta _p}}}\\ \phi, & \quad \frac{{{{{\eta _p}}/{{\eta _s}}} + {\varTheta _p}}}{{1 + {\varTheta _p}}} < \alpha < 1 \end{array} \right. \end{array} \end{aligned}$$
(36)

where ∅ denotes the empty set.

According to (36), we can divide the calculation of \(P_{out}^{21}\) into three cases in terms of \(\alpha\).

Case I \(0< \alpha < {{{\varTheta _p}}/{(1 + {\varTheta _p})}}\)

In this case, \(P_{out}^{ 21}\) can be calculated by

$$\begin{aligned} P_{out}^{21}&= \{ 0\,<\,Z\,<\, f(X),\frac{{{\varTheta _p}}}{{{\eta _p}}}< Y < X\} \}\nonumber \\&=\int \limits _{{{{\varTheta _p}}/{{\eta _p}}}}^\infty {{\lambda _1}\exp ( - {\lambda _1}x)} dx\int \limits _{{{{\varTheta _p}} /{{\eta _p}}}}^x {{\lambda _2}\exp ( - {\lambda _2}y)} dy\int \limits _0^{f(x)} {{\lambda _0}\exp ( - {\lambda _0}z)} dz\nonumber \\&= \int \limits _{{{{\varTheta _p}}/{{\eta _p}}}}^\infty {{\lambda _1}\exp ( - {\lambda _1}x)\left( {\exp ( - {\lambda _2}\frac{{{\varTheta _p}}}{{{\eta _p}}}) - \exp ( - {\lambda _2}x)} \right) \left( {1 - \exp \left( { - {\lambda _0}f(x)} \right) } \right) dx} \nonumber \\&= \frac{{{\lambda _2}}}{{{\lambda _1} + {\lambda _2}}}\exp \left( { - ({\lambda _1} + {\lambda _2})\frac{{{\varTheta _p}}}{{{\eta _p}}}} \right) - \underbrace{\exp ( - {\lambda _2}\frac{{{\varTheta _p}}}{{{\eta _p}}})\int \limits _{{{{\varTheta _p}}/{{\eta _p}}}}^\infty {{\lambda _1}\exp \left( { - {\lambda _1}x - {\lambda _0}f(x)} \right) } dx}_{{\theta _1}} \nonumber \\&\quad + \underbrace{\int \limits _{{{{\varTheta _p}}/{{\eta _p}}}}^\infty {{\lambda _1}\exp \left( { - ({\lambda _1} + {\lambda _2})x - {\lambda _0}f(x)} \right) } dx}_{{\theta _2}} \end{aligned}$$
(37)

Substituting \(f(x) = {{\left( {{\varTheta _p} - \frac{{\alpha {\eta _s}x}}{{(1 - \alpha ){\eta _s}x + 1}}} \right) }/{{\eta _p}}}\) into \({\theta _1}\) and making the change of variable \((1 - \alpha ){\eta _s}x + 1 = t\), after some manipulations, the term \({\theta _1}\) can be rewritten as follows

$$\begin{aligned} {\theta _1}&= \frac{{{\lambda _1}}}{{(1 - \alpha ){\eta _s}}}\exp \left( { - ({\lambda _0} + {\lambda _2})\frac{{{\varTheta _p}}}{{{\eta _p}}} + \frac{{{\lambda _0}\alpha }}{{(1 - \alpha ){\eta _p}}} + \frac{{{\lambda _1}}}{{(1 - \alpha ){\eta _s}}}} \right) \nonumber \\&\quad \underbrace{\int \limits _{\frac{{(1 - \alpha ){\eta _s}{\varTheta _p}}}{{{\eta _p}}} + 1}^\infty {\exp \left[ { - \left( {\frac{{{\lambda _1}}}{{(1 - \alpha ){\eta _s}}}t + \frac{{\frac{{{\lambda _0}\alpha }}{{(1 - \alpha ){\eta _p}}}}}{t}} \right) } \right] } dt}_\varLambda \end{aligned}$$
(38)

Since we have no closed-form expression for the integral in (38), denoted by \(\varLambda\), we tackle this problem by making the change of variable \(s = \frac{t}{{{{(1 - \alpha ){\eta _s}{\varTheta _p}}/{{\eta _p}}} + 1 }}\) and applying the Taylor series expansion for the \(\exp (\frac{{\frac{{{\lambda _0}\alpha }}{{(1 - \alpha ){\eta _p}}}}}{t})\) within the integral in \(\varLambda\), and then after some manipulations, \(\varLambda\) can be expressed as follows

$$\begin{aligned} \varLambda&= \int \limits _1^\infty {\sum \limits _{n = 0}^\infty {\frac{{{{( - 1)}^n}{{\left( {\frac{{{\lambda _0}\alpha }}{{(1 - \alpha ){\eta _p}}}} \right) }^n}}}{{n!{{\left( {\frac{{(1 - \alpha ){\eta _s}{\varTheta _p}}}{{{\eta _p}}} + 1} \right) }^{n - 1}}}}\exp \left( { - \frac{{{\lambda _1}}}{{(1 - \alpha ){\eta _s}}}\left( {\frac{{(1 - \alpha ){\eta _s}{\varTheta _p}}}{{{\eta _p}}} + 1} \right) s} \right) } } ds \nonumber \\&= \sum \limits _{n = 0}^\infty {\frac{{{{( - 1)}^n}{{\left( {\frac{{{\lambda _0}\alpha }}{{(1 - \alpha ){\eta _p}}}} \right) }^n}}}{{n!{{\left( {\frac{{(1 - \alpha ){\eta _s}{\varTheta _p}}}{{{\eta _p}}} + 1} \right) }^{n - 1}}}}} {E_n}\left( {\frac{{{\lambda _1}}}{{(1 - \alpha ){\eta _s}}}\left( {\frac{{(1 - \alpha ){\eta _s}{\varTheta _p}}}{{{\eta _p}}} + 1} \right) } \right) \end{aligned}$$
(39)

where \(E_{n}(\cdot )\) is the exponential integral function.

In order to simplify the notaion, we use a general function \({\varPhi _1}(u,w,\beta )\) defined in Theorem 1 to substitute explicit expression for \(\varLambda\). Then, the expression of \({\theta _1}\) can be expressed in a more compact form as

$$\begin{aligned} {\theta _1} = {\varPhi _1}\left( {\frac{{{\lambda _1}}}{{(1 - \alpha ){\eta _s}}}, - \frac{{({\lambda _0} + {\lambda _2}){\varTheta _p}}}{{{\eta _p}}},\frac{{(1 - \alpha ){\eta _s}{\varTheta _p}}}{{{\eta _p}}} + 1} \right) \end{aligned}$$
(40)

Taking similar steps as in (3839), we can obtain the term \({\theta _2}\) in (37) as follows

$$\begin{aligned} {\theta _2} = {\varPhi _1}\left( {\frac{{{\lambda _1}+{\lambda _2}}}{{(1 - \alpha ){\eta _s}}}, - \frac{{{\lambda _0}{\varTheta _p}}}{{{\eta _p}}},\frac{{(1 - \alpha ){\eta _s}{\varTheta _p}}}{{{\eta _p}}} + 1} \right) \end{aligned}$$
(41)

Substituting (40) and (41) into (37) , we can obtain \(P_{out}^{ 21}\) as

$$\begin{aligned} P_{out}^{ 21}&= \frac{{{\lambda _2}}}{{{\lambda _1} + {\lambda _2}}}\exp \left( { - \frac{{({\lambda _1} + {\lambda _2}){\varTheta _p}}}{{{\eta _p}}}} \right) \nonumber \\&\quad - {\varPhi _1}\left( {\frac{{{\lambda _1}}}{{(1 - \alpha ){\eta _s}}}, - \frac{{({\lambda _0} + {\lambda _2}){\varTheta _p}}}{{{\eta _p}}},\frac{{(1 - \alpha ){\eta _s}{\varTheta _p}}}{{{\eta _p}}} + 1} \right) \nonumber \\&\quad + {\varPhi _1}\left( {\frac{{{\lambda _1} + {\lambda _2}}}{{(1 - \alpha ){\eta _s}}}, - {\lambda _0}\frac{{{\varTheta _p}}}{{{\eta _p}}} ,\frac{{(1 - \alpha ){\eta _s}{\varTheta _p}}}{{{\eta _p}}} + 1} \right) \end{aligned}$$
(42)

Case II \(\frac{{{\varTheta _p}}}{{1 + {\varTheta _p}}}< \alpha < \frac{{{{{\eta _p}}/{{\eta _s}}} + {\varTheta _p}}}{{1 + {\varTheta _p}}}\)

According to \(G_{21}^{}(x,y,z)\), we have \({{{\varTheta _p}} / {{\eta _p}}}< Y< X < \xi\). Thus, \(P_{out}^{ 21}\) can be calculated by

$$\begin{aligned} P_{out}^{21} = \int \limits _{{{{\varTheta _p}}/{{\eta _p}}}}^\xi {{\lambda _1}\exp ( - {\lambda _1}x)} dx\int \limits _{{{{\varTheta _p}} /{{\eta _p}}}}^x {{\lambda _2}\exp ( - {\lambda _2}y)} dy\int \limits _0^{f(x)} {{\lambda _0}\exp ( - {\lambda _0}z)} dz \end{aligned}$$
(43)

By taking some similar steps employed in Case I such as change of variable and Taylor series expansion, \(P_{out}^{ 21}\) in this case can be derived as

$$\begin{aligned} P_{out}^{ 21}&= \frac{{{\lambda _1}}}{{{\lambda _1} + {\lambda _2}}}\left[ {\exp \left( { - ({\lambda _1} + {\lambda _2})\xi } \right) - \exp \left( { - \frac{{({\lambda _1} + {\lambda _2}){\varTheta _p}}}{{{\eta _p}}}} \right) } \right] \nonumber \\&\quad + \exp \left( { - \frac{{({\lambda _1} + {\lambda _2}){\varTheta _p}}}{{{\eta _p}}}} \right) - \exp \left( { - ({\lambda _1}\xi + \frac{{{\lambda _2}{\varTheta _p}}}{{{\eta _p}}})} \right) \nonumber \\&\quad - {\varPhi _2}\left( {\frac{{{\lambda _1}}}{{(1 - \alpha ){\eta _s}}}, - \frac{{({\lambda _0} + {\lambda _2}){\varTheta _p}}}{{{\eta _p}}},\frac{{(1 - \alpha ){\eta _s}{\varTheta _p}}}{{{\eta _p}}} + 1,\xi } \right) \nonumber \\&\quad + {\varPhi _2}\left( {\frac{{{\lambda _1} + {\lambda _2}}}{{(1 - \alpha ){\eta _s}}}, - \frac{{{\lambda _0}{\varTheta _p}}}{{{\eta _p}}} ,\frac{{(1 - \alpha ){\eta _s}{\varTheta _p}}}{{{\eta _p}}} + 1,\xi } \right) \end{aligned}$$
(44)

where \(\varPhi _{2}(\cdot )\) is a function which is defined in (12) in Theorem 1.

Case III \(\min \left\{ {\frac{{{{{\eta _p}}/ {{\eta _s}}} + {\varTheta _p}}}{{1 + {\varTheta _p}}},1} \right\}< \alpha < 1\)

Obviously, in this case \(P_{out}^{ 21} = 0\), since the integral region \(G_{21}^{}(x,y,z) = \phi\) as it shown in (36).

So far, by combing (42), and (44), a piecewise solution for \(P_{out}^{ 21}\) has been obtained in terms of different power allocation factor \(\alpha\).

For the term \(P_{out}^{ 22}\), the calculation is straightforward. To be specific, one can easily obtain the integral region \(G_{22}^{}(x,y,z)\) for \(P_{out}^{ 22}\) by interchanging X and Y in (36), i.e., \(G_{22}^{}(x,y,z) = G_{21}^{}(y,x,z)\). Moreover, note that the expressions of \(P_{out}^{ 21}\) in (29) and \(P_{out}^{ 22}\) in (30) are identical in form except that X and Y are interchanged. Hence, the expression \(P_{out}^{ 22}\) can be obtained directly by interchanging \({\lambda _1}\) and \({\lambda _2}\) in the expression of \(P_{out}^{ 21}\).

1.2 Derivations of \(P_{out}^{31}\) and \(P_{out}^{32}\)

For the term \(P_{out}^{ 31}\), the integral region which is denoted by \(G_{31}^{}(x,y,z)\) can be obtained as follows

$$\begin{aligned} G_{31}\,(x,y,z) = \left\{ \begin{array}{cc} \{ 0< Z< f(Y),Y< \frac{{{\varTheta _p}}}{{{\eta _p}}}< X\}, &{}\quad 0< \alpha< \frac{{{\varTheta _p}}}{{1 + {\varTheta _p}}}\\ \phi , &{} \quad \frac{{{\varTheta _p}}}{{1 + {\varTheta _p}}}< \alpha< \frac{{{{{\eta _p}}/{{\eta _s}}} + {\varTheta _p}}}{{1 + {\varTheta _p}}}\\ \{ 0< Z< f(Y),Y< \xi< \frac{{{\varTheta _p}}}{{{\eta _p}}}< X\}, &{}\quad \frac{{{{{\eta _p}}/ {{\eta _s}}} + {\varTheta _p}}}{{1 + {\varTheta _p}}}< \alpha < 1 \end{array} \right. \end{aligned}$$
(45)

Furthermore, comparing the probabilities of \(P_{out}^{21}\) in (29) and \(P_{out}^{31}\) in (31), we notice that the only difference between them is the last two conditions, therefore, the derivation of \(P_{out}^{31}\) is analogous to that of \(P_{out}^{21}\). Specifically, we also need to divide the derivation into three cases and discuss each case separately. Due to a space limitation, we do not present the derivations of \(P_{out}^{31}\). In addition, like the derivation of \(P_{out}^{22}\), the expression of \(P_{out}^{32}\) can be obtained by interchanging \({\lambda _1}\) and \({\lambda _2}\) in the expression of \(P_{out}^{31}\).

Finally, by substituting the closed-form expressions of \(P_{out}^{11}\), \(P_{out}^{21}\), \(P_{out}^{22}\), \(P_{out}^{31}\), and \(P_{out}^{32}\) into (27), one can obtain a fragment outage probability expression in one-integral form in terms of different \(\alpha\) values, as shown in Theorem 1.

Appendix 2: Proof for Lemma 1

We rewrite the function \({\varPhi _1}(u,\omega ,\beta )\) defined in (11) as follows:

$$\begin{aligned} {\varPhi _1}(u,\omega ,\beta ) = u{e^{u + \omega + \beta }}\varPsi (u,\beta ) \end{aligned}$$
(46)

where \(\varPsi (u,\beta )\) represents the summation part of (11) and we can further rewrite it as

$$\begin{aligned} \varPsi (u,\beta ) = \frac{{{E_0}(u\beta )}}{{{\beta ^{ - 1}}}} - {v_0}{E_1}(u\beta ) + \sum \limits _{n = 2}^{n = \infty } {\frac{{{{({v_0})}^n}}}{{n!}}\frac{{{E_n}(u\beta )}}{{{\beta ^{n - 1}}}}} \end{aligned}$$
(47)

With the help of [25, eq. 5.1.12], for \(n\ge 1\), \(E_{n}(u\beta )\) can be expressed as

$$\begin{aligned} {E_n}(u\beta ) = \frac{{{{( - u\beta )}^{n - 1}}}}{{(n - 1)!}}\left[ { - \ln (u\beta ) + \varphi (n)} \right] - \sum \limits _{m = 0, m \ne n- 1}^\infty {\frac{{{{( - u\beta )}^m}}}{{(m - n + 1)m!}}} \end{aligned}$$

where \(\varphi (n)\) is the psi function defined in [25, eq. 8.364.5]. Moreover, noting that u, and \({v_0}\) in (11) are functions of \({\rho ^{ - 1}}\) and \(\beta\) is independent of \({\rho ^{ - 1}}\), we can see that \(u\beta\) is a function of \({\rho ^{ - 1}}\). Thus, the summation term in (47) is an infinitesimal of the secondary order. When \(\rho\) is very large, we have the following result

$$\begin{aligned} \varPsi (u,\beta ) = \frac{{{E_0}(u\beta )}}{{{\beta ^{ - 1}}}} - {v_0}{E_1}(u\beta ) + {o}({\rho ^{ - 2}}) \end{aligned}$$
(48)

Furthermore, by taking Taylor expansion, \(E_1(u\beta )\) can be expressed as [25, eq.5.1.11]

$$\begin{aligned} {E_1}(u\beta ) = - {\gamma _0} - \ln (u\beta ) + u\beta - \sum \limits _{n = 2}^\infty {\frac{{{{( - 1)}^n}{{(u\beta )}^n}}}{{nn!}}} \end{aligned}$$
(49)

With the help of \(E_0(u\beta )=e^{-u\beta }/{u\beta }\) and substituting (49) into (48), we obtain

$$\begin{aligned} \varPsi (u,\beta ) = \frac{{{e^{ - \beta u}}}}{u} + {\gamma _0}{v_0} + {v_0}\ln (\beta u) - \beta u{v_0} + {o}({\rho ^{ - 2}}) \end{aligned}$$
(50)

Then, by substituting (50) into (46) and after some manipulations, we have

$$\begin{aligned} {\varPhi _1}(u,\omega ,\beta )&= u{e^{u + \omega + \beta }}\left( {{{{e^{ - \beta u}}}/u} + {\gamma _0}{v_0} + {v_0}\ln (\beta u) - \beta u{v_0} + {o}({\rho ^{ - 2}})} \right) \nonumber \\&= (1 + u + {v_0} + \omega )(1 - \beta u) + \frac{{{\beta ^2}{u^2}}}{2} + u{v_0}({\gamma _0} + \ln \beta ) + o({\rho ^{ - 3}}) \end{aligned}$$
(51)

where the last equation holds for using the approximation \(1-exp(-x) \approx x\) for small x.

On the other hand, if we focus on the first order term in (51), then we can easily express \({\varPhi _1}(u,\omega ,\beta )\) as shown in (13).

Finally, note that \({\varPhi _2}(u,\omega ,\beta ,\gamma ) = {\varPhi _1}(u,\omega ,\beta ) - {\varPhi _1}(u,\omega ,\gamma )\) , thus substituting (51) into the right hand of the forgoing equation yields (14). This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, F., Wang, H., Dai, M. et al. An Opportunistic Source Selection Spectrum Sharing Protocol for Overlay Cognitive Two-Way Relaying System. Wireless Pers Commun 96, 4427–4450 (2017). https://doi.org/10.1007/s11277-017-4394-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4394-x

Keywords

Navigation