Skip to main content
Log in

A Novel Sparse Classifier for Automatic Modulation Classification using Cyclostationary Features

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Automatic modulation classification plays a key role in cognitive radio for recognizing the modulation scheme. In this paper, we propose a new classifier based on sparse signal decomposition using an overcomplete composite dictionary (constructed using cyclostationary coefficients) for the classification of modulation format of primary user or to identify noise. The basic principle of the classifier is to classify the received signal modulation format based on reconstructed sparse coefficients after solving \(l_1\) norm minimization using the overcomplete dictionary. Then, relative energies of reconstructed sparse coefficients are compared for recognition of modulation format of the received signal. It is a promising candidate for the cognitive radio due to its robust classification ability. The performance of the proposed classifier is compared with other well known classifiers available in literature. Results show the superiority of the proposed classifier over other classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Communications, 1(2), 137–156.

    Article  Google Scholar 

  2. Hazza, A., Shoaib, M., Alshebeili, S. A., & Fahad, A. (2013). An overview of feature-based methods for digital modulation classification. In Proceedings of 1st international conference on communication signal process. Applicat. IEEE ICCSPA, pp. 1–6.

  3. Orlic, V. D., & Dukic, M. L. (2010). Multipath channel estimation algorithm for automatic modulation classification using sixth-order cumulants. Electronics Letters, 46(19), 1348–1349.

    Article  Google Scholar 

  4. Orlic, V., & Dukic, M. L. (2009). Algorithm for automatic modulation classification in multipath channel based on sixth-order cumulants. In Proceedings of 9th international conference on IEEE telecommunication modern satellite, cable, and broadcast. Services (TELSIKS 09).

  5. Orlic, V. D., & Dukic, M. L. (2009). Automatic modulation classification algorithm using higher-order cumulants under real-world channel conditions. IEEE Communications Letters, 13(12), 917–919.

    Article  Google Scholar 

  6. Wu, H.-C., Saquib, M., & Yun, Z. (2008). Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Transactions on Wireless Communications, 7(8), 3098–3105.

    Article  Google Scholar 

  7. Le Martret, C., & Boiteau, D. M. (1997). Modulation classification by means of different orders statistical moments. Proceedings of IEEE MILCOM ’97, 3, 1387–1391.

    Google Scholar 

  8. Marchand, P., Le Martret, C. & Lacoume, J.-L. (1997). Classification of linear modulations by combination of different orders cyclic cumulants. In Proceedings of the IEEE signal process. Workshop on higher-order statistics, pp. 47–51.

  9. Bao, F., Wang, X., Tao, Z., Wang, Q., & Du, S. (2009). Adaptive extraction of modulation for cavitation noise. The Journal of the Acoustical Society of America, 126(6), 3106–3113.

    Article  Google Scholar 

  10. Mobasseri, B. G. (1999). Constellation shape as a robust signature for digital modulation recognition. Proceedings of IEEE MILCOM, 1, 442–446.

    Google Scholar 

  11. Xu, J. L., Su, W., & Zhou, M. (2011). Likelihood-ratio approaches to automatic modulation classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 41, 455–469.

    Article  Google Scholar 

  12. Xu, J. L., Su, W., & Zhou, M. (2010). Likelihood function-based modulation classification in bandwidth-constrained sensor networks. In Proceedings of international conference on net., sensing and control (ICNSC), pp. 530–533.

  13. Xu, J. L., Su, W., & Zhou, M. (2010). Software-defined radio equipped with rapid modulation recognition. IEEE Transactions on Vehicular Technology, 59(4), 1659–1667.

    Article  Google Scholar 

  14. Liu, J., & Luo, Q. (2012). A novel modulation classification algorithm based on daubechies5 wavelet and fractional Fourier transform in cognitive radio. In Proceedings of IEEE 14th international conference on communication technology (ICCT), pp. 115–120.

  15. Reichert, J. (1992). Automatic classification of communication signals using higher order statistics. Proceedings of of ICASSP ’92, 5, 221–224.

    Google Scholar 

  16. Ho, K. C., Prokopiw, W., & Chan, Y. T. (2000). Modulation identification of digital signals by the wavelet transform. IEE Proceedings—Radar Sonar and Navigation, 147(4), 169–176.

    Article  Google Scholar 

  17. Satija, U., Mohanty, M., & Ramkumar, B. (2015). Automatic modulation classification using S-transform based features. In IEEE conference on signal process, integrated net (SPIN).

  18. Lim, C. W., & Wakin, M. B. (2012). Automatic modulation recognition for spectrum sensing using nonuniform compressive samples. In IEEE international conference on communication (ICC).

  19. Chen, Y., Liu, J., & Lv, S. (2011). Modulation classification based on bispectrum and sparse representation in cognitive radio. In IEEE 13th international conference on communication technology (ICCT).

  20. Chung, C.-D., & Polydoros, A. (1994). Envelope-based classification schemes for continuous-phase binary frequency-shift-keyed modulations. Proceedings of of IEEE MILCOM ’94, 3, 796–800.

    Article  Google Scholar 

  21. Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on Communications, 46(4), 431–436.

    Article  Google Scholar 

  22. Azzouz, E. E., & Nandi, A. K. (1996). Procedure for automatic recognition of analogue and digital modulations. IEE Proceedings Communications, 143(5), 259–266.

    Article  Google Scholar 

  23. Nandi, A. K., & Azzouz, E. E. (1995). Automatic analogue modulation recognition. Signal Processing, 46(2), 211–222.

    Article  MATH  Google Scholar 

  24. Azzouz, E. E., & Nandi, A. K. (1995). Automatic identification of digital modulation types. Signal Processing, 47(1), 55–69.

    Article  MATH  Google Scholar 

  25. Hsue, S.-Z., & Soliman, S. S. (1990). Automatic modulation classification using zero crossing. IEE Proceedings. F, Radar and Signal Processing, 137(6), 459–464.

    Article  Google Scholar 

  26. Haring, L., Chen, Y., & Czylwik, A. (2010). Automatic modulation classification methods for wireless OFDM systems in TDD mode. IEEE Transactions on Communications, 58, 2480–2485.

    Article  Google Scholar 

  27. Zhou, X., Wu, Y., & Yang, G. (2009). Modulation classification of MPSK signals based on relevance vector machines. In International conference IEEE information engineering and computer science (ICIECS).

  28. Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and KNN. IEEE Transactions on Wireless Communications, 11(8), 2742–2750.

    Google Scholar 

  29. Soltanmohammadi, E., & Naraghi-Pour, M. (2013). Blind modulation classification over fading channels using expectation-maximization. IEEE Wireless Communications Letters, 17(9), 1692–1695.

    Article  Google Scholar 

  30. Urriza, P., Rebeiz, E., & Cabric, D. (2013). Optimal discriminant functions based on sampled distribution distance for modulation classification. IEEE Communications Letters, 17(10), 1885–1888.

    Article  Google Scholar 

  31. Urriza, P., Rebeiz, E., Pawelczak, P., & Cabric, D. (2011). Computationally efficient modulation level classification based on probability distribution distance functions. IEEE Communications Letters, 15(5), 476–478.

    Article  Google Scholar 

  32. Wang, F., & Wang, X. (2010). Fast and robust modulation classification via kolmogorov–smirnov test. IEEE Transactions on Communications, 58(8), 2324–2332.

    Article  Google Scholar 

  33. Valipour, M. H., Homayounpour, M. M., & Mehralian, M. A. (2012). Automatic digital modulation recognition in presence of noise using SVM and PSO. In Proceedings of 6th international telecommunications symposium (IST), pp. 378–382.

  34. Ramkumar, B. (2009). Automatic modulation classification for cognitive radios using cyclic feature detection. The IEEE Circuits and Systems Magazine, 9(2), 27–45.

    Article  Google Scholar 

  35. Sobolewski, S., Adams, W. L., & Sankar, R. (2012). Automatic modulation recognition techniques based on cyclostationary and multifractal features for distinguishing LFM, PWM and PPM waveforms used in radar systems as example of artificial intelligence implementation in test. IEEE Autotestcon, 335–340.

  36. Liu, G., Zhang, Z., & Yang, Y. (2012). Recognition of cyclostationary signals smoothed. In International conference on information technology and computer science, pp. 165–169.

  37. Headley, W. C., Reed, J. D., & Silva, C. R. (2008). Distributed cyclic spectrum feature-based modulation classification. In Wireless communication and networking conference (WCNC), pp. 1200–1204.

  38. Ming, L., Shaoquan, Y., & Qing, W. (2006). Algorithm for modulation classification of MPSK signals based on cyclostationary. Signal Process, 22(3), 28.

    Google Scholar 

  39. Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.

    Article  Google Scholar 

  40. Manikandan, M. Sabarimalai, & Ramkumar, B. (2014). Straightforward and robust QRS detection algorithm for wearable cardiac monitor. Healthcare Technology Letters, 1(1), 40–44.

    Article  Google Scholar 

  41. Manikandan, M. S., Samantaray, S. R., & Kamwa, I. (2015). Detection and classification of power quality disturbances using sparse signal decomposition on hybrid dictionaries. IEEE Transactions on Instrumentation and Measurement, 64(1), 27–38.

    Article  Google Scholar 

  42. Mohanty, M., Satija, U., Ramkumar, B., & Manikandan, M. S. (2015). Digital modulation classification under non-Gaussian noise using sparse signal decomposition and maximum likelihood. In 21st national conference on communication (NCC), pp. 1–6.

  43. Donoho, D. L., & Elad, M. (2002). Optimally sparse representation from overcomplete dictionaries vial L1-norm minimization. Proceedings of the National Academy of Sciences, 100(5), 2197–3002.

    Article  Google Scholar 

  44. Beidas, B. F., & Weber, C. L. (1998). Asynchronous classification of MFSK signals using the higher order correlation domain. IEEE Transactions on Communications, 46(4), 480–493.

    Article  Google Scholar 

  45. Su, W., Xu, J. L., & Zhou, M. (2008). Real-time modulation classification based on maximum likelihood. IEEE Communications Letters, 12, 801–803.

    Article  Google Scholar 

  46. Fehske, A., Gaeddert, J., & Reed, J. H. (2005). A new approach to signal classification using spectral correlation and neural networks. In Proceedings of IEEE conference on dynamic spectrum access network, pp. 144–145.

  47. Satija, U., Manikandan, M. S., & Ramkumar, B. (2014). Performance study of cyclostationary based digital modulation classification schemes. In 9th IEEE international conference on industrial information system (ICIIS2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udit Satija.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satija, U., Ramkumar, B. & Manikandan, M.S. A Novel Sparse Classifier for Automatic Modulation Classification using Cyclostationary Features. Wireless Pers Commun 96, 4895–4917 (2017). https://doi.org/10.1007/s11277-017-4435-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4435-5

Keywords

Navigation