Skip to main content
Log in

Two Novel Adaptive Transmission Schemes in a Decode-and-Forward Relaying Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Adaptive transmission in a cooperative network with a half-duplex relay operating in decode-and-forward mode is considered. The main purpose of the paper is maximizing the spectral efficiency of the system, which is reduced by using half-duplex relaying, while the bit error performance is kept below an appropriate threshold. The source transmits its data adaptively using quadratic amplitude modulation. Two adaptive transmission schemes are proposed: the first scheme is named simple adaptive transmission scheme (SATS), and the second one is called high-performance spectral efficiency scheme (HPSES). The SATS has a low complexity system at the destination which does not combine received signals from the source and relay. However, the HPSES uses a linear combination at the destination which is a novel detector to take the possibility of error at the relay into account. Then, we derive exact closed-form expression for the average spectral efficiency and outage probability of the system and an approximate closed-form expression for the average bit error probability. The simulation results corroborates theoretical results. Furthermore, it is shown that despite much lower complexity, the performance of the SATS is close to other well-known schemes. Moreover, the HPSES outperforms other methods of adaptive transmissions in sense of the spectral efficiency and outage probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Proakis, J. G., & Salehi, M. (2008). Digital communications. New York: McGraw-Hill.

    Google Scholar 

  2. Laneman, J. N., Tse, D. N. C., & Wornel, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  3. Goldsmith, A. J., & Chya, S.-G. (1997). Variable-rate variable-power mQAM for fading channels. IEEE Transactions on Communications, 45(10), 1218–1230.

    Article  Google Scholar 

  4. Alouini, M.-S., & Goldsmith, A. J. (1999). Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.

    Article  Google Scholar 

  5. Mahinthan, V., Rutagemwa, H., Mark, J. W., & Shen, X. (2009). Cross-layer performance study of cooperative diversity system with ARQ. IEEE Transactions on Vehicular Technology, 58(2), 705–719.

    Article  Google Scholar 

  6. Nechiporenko, T., Kalansuriya, P., & Tellambura, C. (2009). Performance of optimum switching adaptive m-QAM for amplify-and-forward relays. IEEE Transactions on Vehicular Technology, 58(5), 2258–2268.

    Article  Google Scholar 

  7. Nechiporenko, T., Phan, K. T., Tellambura, C., & Nguyen, H. H. (2009). On the capacity of Rayleigh fading cooperative systems under adaptive transmission. IEEE Transactions on Wireless Communications, 8(4), 1626–1631.

    Article  Google Scholar 

  8. Kwon, J. W., Ko, Y. C., & Yang, H. C. (2011). Maximum spectral efficiency of amplify-and-forward cooperative transmission with multiple relays. IEEE Transactions on Wireless Communications, 10(1), 49–54.

    Article  Google Scholar 

  9. Zhang, Y., Ma, Y., & Tafazolli, R. (2004). Modulation-adaptive cooperation schemes for wireless networks. In Proceedings of IEEE 67th VTC Spring, Singapore, May 2004 (pp. 1320–1324).

  10. Kalansuryia, P., & Tellambura, C. (2009). Capacity analysis of a decode-and-forward cooperative network under adaptive transmission. In Proceedings of IEEE 22nd Canadian conference on electrical and computer engineering, Canada, May 2009 (pp. 298–303).

  11. Altubaishi, E. S., & Shen, X. (2012). Performance analysis of decode-and-forward relaying schemes with adaptive quadrature amplitude modulation (QAM). IET Communications, 6(6), 649–658.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bastami, A., & Olfat, A. (2011). Selection relaying schemes for cooperative wireless networks with adaptive modulation. IEEE Transactions on Vehicular Technology, 60(4), 1539–1558.

    Article  MATH  Google Scholar 

  13. Ma, Y., Tafazolli, R., Zhang, Y., & Qian, C. (2011). Adaptive modulation for opportunistic decode-and-forward relaying. IEEE Transactions on Wireless Communications, 10(7), 2017–2022.

    Article  Google Scholar 

  14. Hwang, K. S., Ko, Y. C., & Alouini, M.-S. (2009). Performance analysis of incremental opportunistic relaying over identically and non-identically distributed cooperative paths. IEEE Transactions on Wireless Communications, 8(4), 1953–1961.

    Article  Google Scholar 

  15. Jiang, J., Thompson, J. S., & Sun, H. (2011). A singular-value-based adaptive modulation and cooperation scheme for virtual-MIMO systems. IEEE Transactions on Vehicular Technology, 60(6), 2495–2504.

    Article  Google Scholar 

  16. Wang, T., Giannakis, G. B., & Wang, R. (2008). Smart regenerative relays for link-adaptive cooperative communications. IEEE Transactions on Communications, 56(11), 1950–1960.

    Article  Google Scholar 

  17. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  18. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part II: Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.

    Article  Google Scholar 

  19. Chen, D., & Laneman, J. N. (2006). Modulation and demodulation for cooperative diversity in wireless systems. IEEE Transactions on Wireless Communications, 5(7), 1785–1794.

    Article  Google Scholar 

  20. Wang, T., Cano, A., Giannakis, G. B., & Laneman, J. N. (2007). High-performance cooperative demodulation with decode-and-forward relays. IEEE Transactions on Communications, 55(7), 1427–1438.

    Article  Google Scholar 

  21. Onat, F. A., Fan, Y., Yanikomeroglu, H., & Poor, H. V. (2008). Threshold based relay selection in cooperative wireless networks. In Global telecommunications conference, 2008. IEEE GLOBECOM 2008. IEEE, Nov. 2008 (pp. 1–5).

  22. Bansal, A., Bhatnagar, M. R., Hjorungnes, A., & Han, Z. (2013). Low-complexity decoding in DF MIMO relaying system. IEEE Transactions on Vehicular Technology, 62(3), 1123–1137.

    Article  Google Scholar 

  23. Jin, X., No, J.-S., & Shin, D.-J. (2011). Relay selection for decode-and-forward cooperative network with multiple antennas. IEEE Transactions on Wireless Communications, 10(12), 4068–4079.

    Article  Google Scholar 

  24. Goldsmith, A. J. (2005). Wireless communications. New York: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mohammadi Amiri.

Appendices

Appendix 1: Joint Statistics of \(\gamma _{\text {NC}}^{\text {SATS}}\) and \(\gamma _{\text {C}}^{\text {SATS}}\)

According to (8), it can be figured out that \(\gamma _{\text {NC}}^{\text {SATS}}\) and \(\gamma _{\text {C}}^{\text {SATS}}\) are independent. Therefore, their joint CDF is

$$\begin{aligned} {F_{\gamma _{\text {NC}}^{\text {SATS}},\gamma _{\text {C}}^{\text {SATS}}}}\left( {x,y} \right)&= \Pr \left\{ {\gamma _{\text {NC}}^{\text {SATS}} \le x,\gamma _{\text {C}}^{\text {SATS}} \le y} \right\} = \Pr \left\{ {{\gamma _{sd}} \le x} \right\} \Pr \left\{ {{\gamma _{\min }} \le y} \right\} \nonumber \\&=\Pr \left\{ {{\gamma _{sd}} \le x} \right\} \left( {1 - \Pr \left\{ {{\gamma _{sr}} \ge y} \right\} \Pr \left\{ {{\gamma _{rd}} \ge y} \right\} } \right) . \end{aligned}$$
(30)

Therefore, we can conclude

$$\begin{aligned} {F_{\gamma _{\text {NC}}^{\text {SATS}},\gamma _{\text {C}}^{\text {SATS}}}}\left( {x,y} \right) = \left( {1 - {e^{ - \frac{x}{{{{\bar{\gamma }}_{sd}}}}}}} \right) \left( {1 - {e^{ - y\left( {\frac{1}{{{{\bar{\gamma }}_{sr}}}} + \frac{1}{{{{\bar{\gamma }}_{rd}}}}} \right) }}} \right) U\left( x \right) U\left( y \right) . \end{aligned}$$
(31)

Furthermore, the joint PDF of \(\gamma _{\text {NC}}^{\text {SATS}}\) and \(\gamma _{\text {C}}^{\text {SATS}}\) can be calculated as

$$\begin{aligned} {f_{{\gamma _{\text {NC}}^{\text {SATS}}},{\gamma _{\text {C}}^{\text {SATS}}}}}\left( {x,y} \right) = \frac{{{d^2}{F_{{\gamma _{\text {NC}}^{\text {SATS}}},{\gamma _{\text {C}}^{\text {SATS}}}}}\left( {x,y} \right) }}{{dxdy}} \end{aligned}$$
(32)

which will result the same equation as (11).

Appendix 2: Joint Statistics of \(\gamma _{\text {NC}}^{\text {HPSES}}\) and \(\gamma _{\text {C}}^{\text {HPSES}}\)

The joint CDF of \(\gamma _{\text {NC}}^{\text {HPSES}}\) and \(\gamma _{\text {C}}^{\text {HPSES}}\) can be obtained as

$$\begin{aligned} {F_{{\gamma _{\text {NC}}^{\text {HPSES}}},{\gamma _{\text {C}}^{\text {HPSES}}}}}\left( {x,y} \right)&= \Pr \left\{ {{\gamma _{\text {NC}}^{\text {HPSES}}} \le x,{\gamma _{\text {C}}^{\text {HPSES}}} \le y} \right\} = \Pr \left\{ {{\gamma _{sd}} \le x,{\gamma _{\min }} + {\gamma _{sd}} \le y} \right\} \nonumber \\&= \left\{ {\begin{array}{c} {\int \limits _0^y {\int \limits _0^{y - v} {{f_{{\gamma _{sd}},{\gamma _{\min }}}}\left( {v,u} \right) dudv} } ,\quad x \ge y \ge 0}\\ {\int \limits _0^x {\int \limits _0^{y - v} {{f_{{\gamma _{sd}},{\gamma _{\min }}}}\left( {v,u} \right) dudv} } ,\quad 0 \le x \le y} \end{array}} \right. \end{aligned}$$
(33)

where \({{f_{{\gamma _{sd}},{\gamma _{\min }}}}}\) is the joint PDF of \({{\gamma _{sd}}}\) and \(\gamma _{\min }\). According to (4c), \({{\gamma _{sd}}}\) and \(\gamma _{\min }\) are independent. As a result, the PDF of \({{\gamma _{\min }}}\) can be determined as

$$\begin{aligned} {f_{{\gamma _{\min }}}}\left( z \right) = \left( {\frac{1}{{{{\bar{\gamma }}_{sr}}}} + \frac{1}{{{{\bar{\gamma }}_{rd}}}}} \right) {e^{ - z\left( {\frac{1}{{{{\bar{\gamma }}_{sr}}}} + \frac{1}{{{{\bar{\gamma }}_{rd}}}}} \right) }}U\left( z \right) . \end{aligned}$$
(34)

By substituting (34) and the PDF of \(\gamma _{sd}\) into (33), we can obtain \({F_{{\gamma _{\text {NC}}^{\text {HPSES}}},{\gamma _{\text {C}}^{\text {HPSES}}}}}\left( {x,y} \right)\) as

$$\begin{aligned} {F_{\gamma _{\text {NC}}^{\text {HPSES}},\gamma _{\text {C}}^{\text {HPSES}}}}\left( {x,y} \right) = \left\{ {\begin{array}{l} {\begin{array}{l} {1 - \frac{{{{\bar{\gamma }}_{sr}}{{\bar{\gamma }}_{rd}}}}{{{{\bar{\gamma }}_{sr}}{{\bar{\gamma }}_{rd}} - {{\bar{\gamma }}_{sd}}\left( {{{\bar{\gamma }}_{sr}} + {{\bar{\gamma }}_{rd}}} \right) }}{e^{ - y\left( {\frac{1}{{{{\bar{\gamma }}_{sr}}}} + \frac{1}{{{{\bar{\gamma }}_{rd}}}}} \right) }} + }\\ {\quad \;\;\;\;\;\;\quad \;\;\;\frac{{{{\bar{\gamma }}_{sd}}\left( {{{\bar{\gamma }}_{sr}} + {{\bar{\gamma }}_{rd}}} \right) }}{{{{\bar{\gamma }}_{sr}}{{\bar{\gamma }}_{rd}} - {{\bar{\gamma }}_{sd}}\left( {{{\bar{\gamma }}_{sr}} + {{\bar{\gamma }}_{rd}}} \right) }}{e^{ - y/{{\bar{\gamma }}_{sd}}}},\;\;\; x \ge y \ge 0} \end{array}}\\ {\begin{array}{l} {1 - {e^{ - x/{{\bar{\gamma }}_{sd}}}} - \frac{{{{\bar{\gamma }}_{sr}}{{\bar{\gamma }}_{rd}}}}{{{{\bar{\gamma }}_{sr}}{{\bar{\gamma }}_{rd}} - {{\bar{\gamma }}_{sd}}\left( {{{\bar{\gamma }}_{sr}} + {{\bar{\gamma }}_{rd}}} \right) }}{e^{ - y\left( {\frac{1}{{{{\bar{\gamma }}_{sr}}}} + \frac{1}{{{{\bar{\gamma }}_{rd}}}}} \right) }} \times }\\ {\quad \;\;\;\quad \;\;\;\;\;\left( {1 - {e^{ - x\left( {\frac{1}{{{{\bar{\gamma }}_{sd}}}} - \frac{1}{{{{\bar{\gamma }}_{sr}}}} - \frac{1}{{{{\bar{\gamma }}_{rd}}}}} \right) }}} \right) ,\;\;\; 0 \le x \le y} \end{array}} \end{array}} \right. . \end{aligned}$$
(35)

Calculation of the joint PDF of \(\gamma _{\text {NC}}^{\text {HPSES}}\) and \(\gamma _{\text {C}}^{\text {HPSES}}\) is straightforward.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, M.M., Maham, B. Two Novel Adaptive Transmission Schemes in a Decode-and-Forward Relaying Network. Wireless Pers Commun 96, 5705–5722 (2017). https://doi.org/10.1007/s11277-017-4443-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4443-5

Keywords

Navigation