Skip to main content
Log in

Cyclostationary Features Based Modulation Classification in Presence of Non Gaussian Noise Using Sparse Signal Decomposition

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Automatic modulation classification (AMC) is a salient component in the area of cognitive radio, signal detection, interference identification, electronic warfare, spectrum management and surveillance. The majority of the existing signals detection and classification methods presume that the received signal is corrupted by additive white Gaussian noise. The performance of the modulation classification algorithms degrades severely under the non-Gaussian impulsive noise. Hence, in this paper, we introduce a robust algorithm to identify the modulation type of digital signal contaminated with non-Gaussian impulse noise and additive white Gaussian noise (AWGN) using a sparse signal decomposition on hybrid dictionary. The algorithm first detects and removes the impulse noise using sparse signal decomposition thereafter it classifies the modulation schemes using cyclostationary feature extraction algorithm. Simulation results demonstrate the superiority of the proposed method under different non-Gaussian impulse noise and AWGN conditions. The performance of the proposed classifier is evaluated using well known classifiers available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and KNN. IEEE Transactions on Wireless Communications, 11(8), 2742–2750.

    Google Scholar 

  2. Dobre, O. A., Abdi, A., Bar-ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Communications, 1, 137–156.

    Article  Google Scholar 

  3. Hazza, A., Shoaib, M., Alshebeili, S. A., & Fahad, A. (2013). An overview of feature-based methods for digital modulation classification. In Proceedings of the 1st international conference on communication signal processing application IEEE ICCSPA (pp. 1–6).

  4. Haykin, S., & Moher, M. (2007). Introduction to analog and digital communications (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  5. Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on Communications, 46(4), 431–436.

    Article  Google Scholar 

  6. Hsue, S. Z., & Soliman, S. S. (1989). Automatic modulation recognition of digitally modulated signals. In Proceedings of the IEEE MILCOM (pp. 645–649).

  7. Hsue, S. Z., & Soliman, S. S. (1990). Automatic modulation classification using zero crossing. IEE Proceedings F Radar Signal Processing, 137, 459–464.

    Article  Google Scholar 

  8. Ho, K. C., Prokopiw, W., & Chan, Y. T. (2000). Modulation identification of digital signals by the wavelet transform. IEE Proceedings-Radar, Sonar and Navigation, 47, 169–176.

    Article  Google Scholar 

  9. Hong, L., & Ho, K. C. (1999). Identification of digital modulation types using the wavelet transform. In Proceedings of the IEEE MILCOM (pp. 427–431).

  10. Ramkumar, B. (2009). Automatic modulation classification for cognitive radios using cyclic feature detection. IEEE Circuits and Systems Magazine, 9(2), 27–45.

    Article  Google Scholar 

  11. Satija, U., Manikandan, M. S., & Ramkumar, B. (2014). Performance study of cyclostationary based digital modulation classification schemes. In Proceedings of the 9th IEEE international conferences industrial information system (ICIIS2014) (pp. 1–5).

  12. Yeung, G. K., & Gardner, W. A. (1996). Search-efficient methods of detection of cyclostationary signals. IEEE Transactions on Signal Processing, 44(5), 1214–1223.

    Article  Google Scholar 

  13. Sobolewski, S., Adams, W. L., & Sankar, R. (2012). Automatic modulation recognition techniques based on cyclostationary and multifractal features for distinguishing LFM, PWM and PPM waveforms used in radar systems as example of artificial intelligence implementation in test. In IEEE AUTOTESTCON.

  14. Liu, G., Zhang, Z., & Yang, Y. (2012). Recognition of cyclostationary signals smoothed. In National conference on information technology and computer science. Atlantis Press.

  15. Ming, L., Shaoquan, Y., & Qing, W. (2006). Algorithm for modulation classification of MPSK signals based on cyclostationary. Signal Processing, 22(3), 028.

    Google Scholar 

  16. Liu, J., & Luo, Q. (2012). A novel modulation classification algorithm based on daubechies5 wavelet and fractional fourier transform in cognitive radio. In Proceedings of the 2012 IEEE 14th international conference on communication technology (ICCT) (pp. 115–120).

  17. Orlic, V. D., & Dukic, M. L. (2010). Multipath channel estimation algorithm for automatic modulation classification using sixth-order cumulants. Electronics Letters, 46(19), 1348–1349.

    Article  Google Scholar 

  18. Orlic, V., & Dukic, M. L. (2009). Algorithm for automatic modulation classification in multipath channel based on sixth-order cumulants. In Proceedings of the 2009 9th international conference on IEEE telecommunication in modern satellite, cable, and broadcasting services (TELSIKS 09).

  19. Spooner, C. M. (1995). Classification of cochannel communication signals using cyclic cumulants. In Proceedings of the ASILOMAR (pp. 531–536).

  20. Spooner, C. M. (2001). On the utility of sixth-order cyclic cumulants for RF signal classification. In Proceedings of the ASILOMAR (pp. 890–897).

  21. Dobre, O. A., Bar-Ness, Y., & Su, W. (2003). Higher-order cyclic cumulants for high order modulation classification. In Proceedings of the IEEE MILCOM (pp. 112–117).

  22. Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 4–37.

    Article  Google Scholar 

  23. Assaleh, K., Farrell, K. R., & Mammone, R. J. (1992). A new method of modulation classification for digitally modulated signals. In Proceedings of the IEEE MILCOM (pp. 712–716).

  24. Farrell, K. R., & Mammone, R. J. (1993). Modulation classification using a neural tree network. In Proceedings of the IEEE MILCOM (pp. 1028–1032).

  25. Swami, A., & Sadler, B. M. (2000). Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications, 48, 416–429.

    Article  Google Scholar 

  26. Orlic, V. D., & Dukic, M. L. (2009). Automatic modulation classification algorithm using higher-order cumulants under real-world channel conditions. IEEE Communications Letters, 13(12), 917–919.

    Article  Google Scholar 

  27. Wu, H. C., Saquib, M., & Yun, Z. (2008). Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Transactions on Wireless Communications, 7(8), 3098–3105.

    Article  Google Scholar 

  28. Lim, C. W., & Wakin, M. B. (2012). Automatic modulation recognition for spectrum sensing using nonuniform compressive samples. In IEEE international conference on communication (ICC).

  29. Chen, Y., Liu, J., & Lv, S. (2011). Modulation classification based on bispectrum and sparse representation in cognitive radio. In IEEE 13th international conference on communication technology (ICCT).

  30. Blackard, K. L., Rappaport, T. S., & Bostian, C. W. (1993). Measurements and models of radio frequency impulsive noise for indoor wireless communications. IEEE Journal on Selected Areas in Communications, 11(7), 991–1001.

    Article  Google Scholar 

  31. Chavali, V. G., & da Silva, C. R. (2013). Classification of digital amplitude-phase modulated signals in time-correlated non-gaussian channels. IEEE Transactions on Communications, 61(6), 2408–2419.

    Article  Google Scholar 

  32. Sangston, K. J., & Gerlach, K. R. (1994). Coherent detection of radar targets in a non-Gaussian background. IEEE Transactions on Aerospace and Electronic Systems, 30(2), 330–340.

    Article  Google Scholar 

  33. Middleton, D. (1977). Statistical-physical models of electromagnetic interference. IEEE Transactions on Electromagnetic Compatibility, 19(3), 106–127.

    Article  Google Scholar 

  34. Mohanty, M., Satija, U., Ramkumar, B., & Manikandan, M. S. (2015). Digital modulation classification under non-Gaussian noise using sparse signal decomposition and maximum likelihood. In Proceedings of the 21st national conference communications (NCC) (pp. 1–6).

  35. El-Mahdy, A. E. (2004). Classification of MFSK signals over time-varying flat correlated fading channels under class-A impulsive noise environment. IEE Proceedings-Communications, 151(6), 619–626.

    Article  Google Scholar 

  36. Sadler, B. M. (1996). Detection in correlated impulsive noise using fourth-order cumulants. IEEE Transactions on Signal Processing, 44(11), 2793–2800.

    Article  MathSciNet  Google Scholar 

  37. Wei, W., & Mendel, J. M. (1999). A fuzzy logic method for modulation classification in nonideal environments. IEEE Transactions on Fuzzy Systems, 7(3), 333–344.

    Article  Google Scholar 

  38. Hazza, A., Shoaib, M., Saleh, A., & Fahd, A. (2010). Classification of digitally modulated signals in presence of non-Gaussian HF noise. In IEEE 7th international symposium on wireless communication systems (ISWCS) (pp. 815–819).

  39. Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.

    Article  Google Scholar 

  40. Manikandan, M. S., & Ramkumar, B. (2014). Straightforward and robust QRS detection algorithm for wearable cardiac monitor. Healthcare Technology Letters, 1(1), 40–44.

    Article  Google Scholar 

  41. Manikandan, M. S., Samantaray, S., & Kamwa, I. (2014). Detection and classification of power quality disturbances using sparse signal decomposition on hybrid dictionaries. IEEE Transactions on Instrumentation and Measurement, 64(1), 27–38.

    Article  Google Scholar 

  42. Candes, E. J., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

    Article  MathSciNet  MATH  Google Scholar 

  43. Gardner, W. A. (1986). Introduction to random process with applications to signals and systems. London: MacMillan.

    MATH  Google Scholar 

  44. Roberts, R. S. (1991). Computationally efficient algorithms for cyclic spectral analysis. IEEE Signal Processing Magazine, 8(2), 38–49.

    Article  MathSciNet  Google Scholar 

  45. Gardner, W. M. (1986). Measurement of spectral correlation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(5), 1111–1123.

    Article  Google Scholar 

  46. Gardner, W. A. (1988). Statistical spectral analysis: A nonprobabilistic theory. Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  47. Donoho, D. L., & Huo, X. (2001). Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 47(7), 2845–2862.

    Article  MathSciNet  MATH  Google Scholar 

  48. Dutta, T., Satija, U., Ramkumar, B., & Sabarimalai Manikandan, M. (2017). Blind impulse estimation and removal using sparse signal decomposition framework for OFDM systems. Circuits, Systems, and Signal Processing. doi:10.1007/s00034-017-0573-y.

    Google Scholar 

  49. Donoho, D. L., & Elad, M. (2002). Optimally sparse representation from overcomplete dictionaries via L1-norm minimization. Proceedings of the National Academy of Sciences, 100(5), 2197–3002.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udit Satija.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satija, U., Mohanty, M. & Ramkumar, B. Cyclostationary Features Based Modulation Classification in Presence of Non Gaussian Noise Using Sparse Signal Decomposition. Wireless Pers Commun 96, 5723–5741 (2017). https://doi.org/10.1007/s11277-017-4444-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4444-4

Keywords

Navigation