Skip to main content

Advertisement

Log in

A Limited Energy Consumption Model for P2P Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

One of the most critical and challenging issues when developing wireless sensor networks (WSNs) is how to extend the network lifetime. Sensors are energy-constrained devices that require developing minimization techniques and mechanisms in order to exploit perfectly the energy and to prolong as long as possible the overall network lifetime. In this paper, we propose a limited energy consumption model for P2P wireless sensor networks, which takes a benefit of the Chord assets and adapts this last one so that it will be suitable for P2P WSNs. Chord in its basic form optimizes the path length by minimizing the number of hops, but it does not optimize the energy, since it was designed for wired networks. The key idea of our proposal is to optimize both the number of hops and the energy consumption to provide an energy-efficient routing scheme for P2P WSNs. The proposed enhanced Chord scheme makes a use of only Cluster-Heads (with the strongest level of energy) to construct the ring, which reduces the Chord topology while preserving the network connectivity. In the enhanced Chord scheme, Cluster-Heads are elected automatically and dynamically over the time, which helps to extend the network longevity. Simulation results show that the proposed scheme proves good performances in terms of hops number, alive nodes over the time and energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Naik, P., Telkar, N., & Kotin, K. (2016). Survey on wireless sensor network with their remaining challenges. IJSRST, 2(6), 321–331. doi:15.11/IJSRST162658.

  2. Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. (2017). A survey of network lifetime maximization techniques. IEEE Communications Surveys & Tutorials. doi:10.1109/COMST.2017.2650979.

    Google Scholar 

  3. Amad, M., Aissani, D., Meddahi, A., Benkerrou, M., & Amghar, F. (2015). De Bruijn graph based solution for lookup acceleration and optimization in P2P networks. Journal of Wireless Personal Communications, 85(3), 1471–1486.

    Article  Google Scholar 

  4. Cherbal, S., Boukerram, A., & Boubetra, A. (2016). A survey of DHT solutions in fixed and mobile networks. International Journal of Communication Networks and Distributed Systems, 17(1), 14–42.

    Article  Google Scholar 

  5. Zuo, X., & Iamnitchi, A. (2016). A survey of socially aware peer-to-peer systems. ACM Computing Surveys (CSUR), 49(1), 1–28.

    Article  Google Scholar 

  6. Meshkova, E., Riihijärvi, J., Petrova, M., & Mähönen, P. (2008). A survey on resource discovery mechanisms, peer-to-peer and service discovery frameworks. Computer Networks, 52(11), 2097–2128.

    Article  Google Scholar 

  7. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Dabek, F., & Balakrishnan, H. (2003). Chord: A scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Transactions on Networking, 11(1), 17–32.

    Article  Google Scholar 

  8. Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.

    Article  Google Scholar 

  9. Sunita, M., Malik, J., & Mor, S. (2012). Comprehensive study of applications of wireless sensor network. International Journal of Advanced Research in Computer Science and Software Engineering, 2(11). ISSN 2277.

  10. Boudries, A., Amad, M., & Siarry, P. (2016). Novel approach for replacement of a failure node in wireless sensor network. Journal of Telecommunication Systems. doi:10.1007/s11235-016-0236-5.

    Google Scholar 

  11. Xu, Y., Heidemann, J., & Estrin, D. (2001). Geography-informed energy conservation for ad hoc routing. In Proceedings of the 7th annual international conference on mobile computing and networking. ACM, pp. 70–84.

  12. Schurgers, C., Tsiatsis, V., & Srivastava, M. B. (2002). STEM: Topology management for energy efficient sensor networks. In Aerospace conference proceedings, Vol, 3. IEEE, pp. 1099–1108.

  13. Cerpa, A., & Estrin, D. (2004). ASCENT: Adaptive self-configuring sensor networks topologies. IEEE Transactions on Mobile Computing, 3(3), 272–285.

    Article  Google Scholar 

  14. Lee, J. H. (2013). A traffic-aware energy efficient scheme for WSN employing an adaptable wakeup period. Wireless Personal Communications, 71(3), 1879–1914.

    Article  Google Scholar 

  15. Xie, R., Liu, A., & Gao, J. (2016). A residual energy aware schedule scheme for WSNs employing adjustable awake/sleep duty cycle. Wireless Personal Communications, 90(4), 1859–1887.

    Article  Google Scholar 

  16. Rodoplus, V., & Meng, T. H. (1999). Minimum energy mobile wireless networks. IEEE Journal on Selected Areas in Communications, 17(8), 1333–1344.

    Article  Google Scholar 

  17. Li, L., & Halpern, J. Y. (2004). A minimum-energy path-preserving topology-control algorithm. IEEE Transactions on Wireless Communications, 3(3), 910–921.

    Article  Google Scholar 

  18. Narayanaswamy, S., Kawadia, V., Sreenivas, R. S., & Kumar, P. (2002). Power control in ad-hoc networks: Theory, architecture, algorithm and implementation of the COMPOW protocol. In European wireless conference, Vol. 202, pp. 156–162.

  19. Ahmed, G., & Khan, N. M. (2017). Adaptive power-control based energy-efficient routing in wireless sensor networks. Wireless Personal Communications, 94(3), 1297–1329. doi:10.1007/s11277-016-3683-0.

    Article  Google Scholar 

  20. Du, D. Z., & Pardalos, P. M. (Eds.). (2013). Handbook of combinatorial optimization: Supplement (Vol. 1). Springer US. doi:10.1007/978-1-4757-3023-4.

  21. Wu, J., Dai, F., Gao, M., & Stojmenovic, I. (2002). On calculating power-aware connected dominating sets for efficient routing in ad hoc wireless networks. Journal of Communications and Networks, 4(1), 59–70.

    Article  Google Scholar 

  22. Yuanyuan, Z., Jia, X., & Yanxiang, H. (2006). Energy efficient distributed connected dominating sets construction in wireless sensor networks. In Proceedings of the 2006 international conference on Wireless communications and mobile computing. ACM, pp. 797–802.

  23. Labrador, M. A., & Wightman, P. M. (2009). Topology control in wireless sensor networks: With a companion simulation tool for teaching and research. Springer Netherlands. doi:10.1007/978-1-4020-9585-6.

  24. Bao, L., & Garcia-Luna-Aceves, J. J. (2003). Topology management in ad hoc networks. In Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing. ACM, USA, pp. 129–140.

  25. Shanavas, J., & Simi, S. (2014). An energy efficient topology control scheme with connectivity learning in wireless networks. In International conference on advances in computing, communications and informatics, (ICACCI). IEEE, pp. 1770–1774.

  26. Thenmozhi, E., & Audithan, S. (2016). Energy efficient cluster head selection and data convening in wireless sensor networks. Indian Journal of Science and Technology, 9(15). doi:10.17485/ijst/2016/v9i15/77749.

  27. Alippi, C., Anastasi, G., Francesco, M. D., & Roveri, M. (2010). An adaptive sampling algorithm for effective energy management in wireless sensor networks with energy-hungry sensors. IEEE Transactions on Instrumentation and Measurement, 59(2), 335–344.

    Article  Google Scholar 

  28. Fateh, B., & Govindarasu, M. (2013). Energy minimization by exploiting data redundancy in real-time wireless sensor networks. Ad Hoc Networks, 11(6), 1715–1731.

    Article  Google Scholar 

  29. Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys & Tutorials, 13(3), 443–461.

    Article  Google Scholar 

  30. Chen, B., Jamieson, K., Balakrishnan, H., & Morris, R. (2002). Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. Wireless Networks, 8(5), 481–494.

    Article  MATH  Google Scholar 

  31. Kawadia, V., & Kumar, P. R. (2003). Power control and clustering in ad hoc networks. In INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications, IEEE Societies, Vol. 1, pp. 459–469.

  32. Akkari, W., Bouhdid, B., & Belghith, A. (2015). LEATCH: Low energy adaptive tier clustering hierarchy. Procedia Computer Science, 52, 365–372.

    Article  Google Scholar 

  33. Fersi, G., Louati, W., & Jemaa, M. B. (2013). Distributed Hash table-based routing and data management in wireless sensor networks: A survey. Wireless Networks, 19(2), 219–236.

    Article  Google Scholar 

  34. Busnel, Y. (2008). SOLIST : Structure multi-couche pair-à-pair à faible consommation pour les rśeaux de capteurs sans-fil. In Proceedings, Conférence Francophone sur les Systèmes d’Exploitation-6‘eme édition, (CFSE’6), Suisse.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Amad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheklat, L., Amad, M. & Boukerram, A. A Limited Energy Consumption Model for P2P Wireless Sensor Networks. Wireless Pers Commun 96, 6299–6324 (2017). https://doi.org/10.1007/s11277-017-4478-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4478-7

Keywords

Navigation