Skip to main content
Log in

Characterization of 3D Elliptical Spatial Channel Model for MIMO Mobile-to-Mobile Communication Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we develop three dimensional (3D) elliptical cylindrical geometrical channel model for multiple-input–multiple-output mobile-to-mobile communication environments. It is assumed that both the mobile nodes are surrounded by uniformly distributed infinite number of scatterers sprinkled over the surfaces of an elliptical-based cylindrical shapes. The mobile nodes are located at the centers of the bottom surfaces of elliptical cylinders and both the mobile nodes are equipped with low-elevated multiple antenna arrays. The proposed model is designed for urban areas, where mostly the mobile subscribers reside and are on the move. This model takes into account the effect of multiple antenna array attributes, roadside infrastructure, the dimensions of the propagation medium, transmit–receiver distance and the velocity of mobile nodes. Using the proposed channel model, expressions for the joint and marginal cross correlation functions are derived for non-isotropic scattering environments. The derived expression are simulated for various parameters to verify their effect on the antenna correlations. The obtained correlation graph is compared with measured data that confirms a close agreement with it. Finally, by changing various parameters of the proposed channel model, some existing 2D and 3D channel models are deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdi, A., & Kaveh, M. (2002). A space-time correlation model for multielement antenna systems in mobile fading channels. IEEE Journal on Selected Areas in communications, 20(3), 550–560.

    Article  Google Scholar 

  2. Abhayawardhana, V., Wassell, I., Crosby, D., Sellars, M., & Brown, M. (2005). Comparison of empirical propagation path loss models for fixed wireless access systems. In Proceedings of the IEEE Vehicular Technology Conference, vol. 1 (pp. 73–77). IEEE.

  3. Abouda, A. A. (2007). Characterization of MIMO channel capacity in urban microcellular environment. Ph.D. Thesis, Electrical and Communications Engineering, Helsinki University of Technology.

  4. Abrarov, S., & Quine, B. (2014). Accurate approximations for the complex error function with small imaginary argument. ArXiv preprint arXiv:1411.1024

  5. Ahmed, A., Nawaz, S. J., & Gulfam, S. M. (2015). A 3D propagation model for emerging land mobile radio cellular environments. PLoS ONE, 10(8), e0132,555.

    Article  Google Scholar 

  6. Akki, A. S. (1994). Statistical properties of mobile-to-mobile land communication channels. IEEE Transactions on Vehicular Technology, 43(4), 826–831. doi:10.1109/25.330143.

    Article  Google Scholar 

  7. Akki, A. S., & Haber, F. (1986). A statistical model of mobile-to-mobile land communication channel. IEEE Transactions on Vehicular Technology, 35(1), 2–7. doi:10.1109/T-VT.1986.24062.

    Article  Google Scholar 

  8. Asplund, H., Glazunov, A. A., Molisch, A. F., Pedersen, K. I., & Steinbauer, M. (2006). The COST 259 directional channel model-part II: Macrocells. IEEE Transactions on Wireless Communications, 5(12), 3434–3450.

    Article  Google Scholar 

  9. Avazov, N., & Pätzold, M. (2012). Design of wideband MIMO car-to-car channel models based on the geometrical street scattering model. Modelling and Simulation in Engineering, 2012, 1–5.

    Article  Google Scholar 

  10. Baltzis, K. B. (2011). A simplified geometric channel model for mobile-to-mobile communications. Radioengineering, 20(4), 961–967.

    Google Scholar 

  11. Batool, T., Matthias, P., et al. (2011). A geometrical three-ring-based model for MIMO mobile-to-mobile fading channels in cooperative networks. EURASIP Journal on Advances in Signal Processing, 2011, 1–13.

    Google Scholar 

  12. Bello, P. (1963). Characterization of randomly time-variant linear channels. IEEE Transactions on Communications Systems, 11(4), 360–393.

    Article  Google Scholar 

  13. Blum, R. S., & Winters, J. H. (2002). On optimum MIMO with antenna selection. In Proceedings of the IEEE International Conference on Communications (ICC) 2002 (Vol. 1, pp. 386–390).

  14. Chelli, A., & Patzöld, M. (2007). A MIMO mobile-to-mobile channel model derived from a geometric street scattering model. In Proceedings of the Wireless Communication Systems (ISWCS) (pp. 792–797).

  15. Chen, J., & Pratt, T. G. (2012). A three-dimensional geometry-based statistical model of \(2\times 2\) dual-polarized MIMO mobile-to-mobile wideband channels. Modelling and Simulation in Engineering, 2012, 6.

    Article  Google Scholar 

  16. Cheng, X., Wang, C. X., Laurenson, D. I., Salous, S., & Vasilakos, A. V. (2009). An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels. IEEE Transactions on Wireless Communications, 8(9), 4824–4835.

    Article  Google Scholar 

  17. Chu, M. J., & Stark, W. E. (2000). Effect of mobile velocity on communications in fading channels. IEEE Transactions on Vehicular Technology, 49(1), 202–210.

    Article  Google Scholar 

  18. Crane, R. K. (1980). Prediction of attenuation by rain. IEEE Transactions on Communications, 28(9), 1717–1733.

    Article  Google Scholar 

  19. Ertel, R. B., & Reed, J. H. (1999). Angle and time of arrival statistics for circular and elliptical scattering models. IEEE Journal on Selected areas in Communications, 17(11), 1829–1840.

    Article  Google Scholar 

  20. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.

    Article  Google Scholar 

  21. Gesbert, D., Bolcskei, H., Gore, D. A., & Paulraj, A. J. (2002). Outdoor MIMO wireless channels: Models and performance prediction. IEEE Transactions on Communications, 50(12), 1926–1934.

    Article  Google Scholar 

  22. Goldsmith, A., Jafar, S. A., Jindal, N., & Vishwanath, S. (2003). Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications, 21(5), 684–702.

    Article  MATH  Google Scholar 

  23. Haibin, L., Liangjun, X., Jibing, Y., & Linhua, Z. (2013). Modeling and analysis on mobile-to-mobile cascade channel of amplify-and-forward two-way relay networks. In Proceedings of the National Doctoral Academic Forum on Information and Communications Technology (pp. 1–6). IET.

  24. Holter, B. (2001). On the capacity of the MIMO channel: A tutorial introduction. In Proceedings of the IEEE Norwegian Symposium on Signal Processing (pp. 167–172).

  25. Janaswamy, R. (2002). Angle of arrival statistics for a 3D spheroid model. IEEE Transactions on Vehicular Technology, 51(5), 1242–1247.

    Article  Google Scholar 

  26. Jeffrey, A., & Zwillinger, D. (2007). Table of integrals, series, and products. Cambridge: Academic Press.

    Google Scholar 

  27. Kang, H., Stuber, G., Pratt, T. G., & Ingram, M. A. (2004). Studies on the capacity of MIMO systems in mobile-to-mobile environment. In Wireless Communications and Networking Conference, 2004. WCNC. 2004 IEEE (Vol. 1, pp. 363–368). IEEE.

  28. Karedal, J., Tufvesson, F., Czink, N., Paier, A., Dumard, C., Zemen, T., Mecklenbräuker, C. F., & Molisch, A. F. (2009). Measurement-based modeling of vehicle-to-vehicle MIMO channels. In Proceedings of the IEEE International Conference on Communications (pp. 1–6). IEEE.

  29. Khan, N. M. (2006). Modeling and characterization of multipath fading channels in cellular mobile communication systems. Ph.D. Thesis, University of New South Wales (UNSW) Sydney, Australia.

  30. Khan, N. M., Simsim, M. T., & Rapajic, P. B. (2008). A generalized model for the spatial characteristics of the cellular mobile channel. IEEE Transactions on Vehicular Technology, 57(1), 22–37.

    Article  Google Scholar 

  31. Liberti, J. C., & Rappaport, T. S. (1996). A geometrically based model for line-of-sight multipath radio channels. In Proceedings of the IEEE Vehicular Technology Conference (Vol. 2, pp. 844–848).

  32. Michailidis, E. T., Theofilakos, P., & Kanatas, A. G. (2012). A 3D model for mimo mobile-to-mobile amplify-and-forward relay fading channels. In Proceedings of the European Conference on Antennas Propagation (EUCAP) (pp. 2073–2077). IEEE.

  33. Narrainen, J., Besnier, P., & Ibambe, M. G. (2016). A geometry-based stochastic approach to emulate V2V communications main propagation channel metrics. International Journal of Microwave and Wireless Technologies, 8(03), 455–461.

    Article  Google Scholar 

  34. Nawaz, S. J., Qureshi, B. H., & Khan, N. M. (2010). A generalized 3D scattering model for a macrocell environment with a directional antenna at the BS. IEEE Transactions on Vehicular Technology, 59(7), 3193–3204. doi:10.1109/TVT.2010.2050015.

    Article  Google Scholar 

  35. Olenko, A. Y., Wong, K. T., & Hui-On Ng, E. (2006). Analytically derived uplink/downlink TOA and 2-D-DOA distributions with scatterers in a 3-D hemispheroid surrounding the mobile. IEEE Transactions on Antennas and Propagation, 54(9), 2446–2454.

    Article  Google Scholar 

  36. Parsons, J., & Turkmani, A. (1991). Characterisation of mobile radio signals: Model description. In Proceedings of the IEE Communications, Speech and Vision (Vol. 138, pp. 549–556). IET.

  37. Patzöld, M., Hogstad, B. O., & Youssef, N. (2008). Modeling, analysis, and simulation of MIMO mobile-to-mobile fading channels. IEEE Transactions on Wireless Communications, 7(2), 510–520.

    Article  Google Scholar 

  38. Pätzold, M., & Hogstad, B. O. (2008). A wideband MIMO channel model derived from the geometric elliptical scattering model. Wireless Communications and Mobile Computing, 8(5), 597–605.

    Article  Google Scholar 

  39. Patzold, M., Hogstad, B. O., & Youssef, N. (2008). Modeling, analysis, and simulation of MIMO mobile-to-mobile fading channels. IEEE Transactions on Wireless Communications, 7(2), 510–520.

    Article  Google Scholar 

  40. Paul, B. S., Hasan, A., Madheshiya, H., & Bhattacharjee, R. (2009). Time and angle of arrival statistics of mobile-to-mobile communication channel employing circular scattering model. IETE Journal of Research, 55(6), 275–281.

    Article  Google Scholar 

  41. Pätzold, M., Hogstad, B. O., Youssef, N., & Kim, D. (2005). A MIMO mobile-to-mobile channel model: Part I-the reference model. In Proceedings of the IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (Vol. 1, pp. 573–578).

  42. Petrus, P., Reed, J. H., & Rappaport, T. S. (2002). Geometrical-based statistical macrocell channel model for mobile environments. IEEE Trans. Commun., 50(3), 495–502. doi:10.1109/26.990911.

    Article  Google Scholar 

  43. Qu, F., Wang, F. Y., & Yang, L. (2010). Intelligent transportation spaces: Vehicles, traffic, communications, and beyond. IEEE Communications Magazine, 48(11), 136–142.

    Article  Google Scholar 

  44. Rade, L., & Westergren, B. (2013). Mathematics handbook for science and engineering. Berlin: Springer.

    Google Scholar 

  45. Raghavan, V., Kotecha, J. H., & Sayeed, A. M. (2010). Why does the kronecker model result in misleading capacity estimates? IEEE Transactions on Information Theory, 56(10), 4843–4864.

    Article  MathSciNet  MATH  Google Scholar 

  46. Riaz, M., Khan, N. M., & Nawaz, S. J. (2015). A generalized 3D scattering channel model for spatiotemporal statistics in mobile-to-mobile communication environment. IEEE Transactions on Vehicular Technology, 64(10), 4399–4410.

    Article  Google Scholar 

  47. Riaz, M., Nawaz, S. J., & Khan, N. M. (2013). 3D ellipsoidal model for mobile-to-mobile radio propagation environments. Wireless Personal Communications, 72(4), 2465–2479.

    Article  Google Scholar 

  48. Telatar, E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10(6), 585–595.

    Article  MathSciNet  Google Scholar 

  49. Wang, L., Qi, X., Xiao, J., Wu, K., Hamdi, M., & Zhang, Q. (2016). Exploring smart pilot for wireless rate adaptation. IEEE Transactions on Wireless Communications, 15(7), 4571–4582.

    Google Scholar 

  50. Wani, M. Y., Riaz, M., & Khan, N. M. (2016). Modeling and characterization of mimo mobile-to-mobile communication channels using elliptical scattering geometry. Wireless Personal Communications, 91(2), 509–524.

    Article  Google Scholar 

  51. Yamada, Y., Ebine, Y., & Nakajima, N. (1987). Base station/vehicular antenna design techniques employed in high-capacity land mobile communications system. Review of the Electrical Communication Laboratories, 35(2), 115–121.

    Google Scholar 

  52. Yuan, Y., Cheng, X., Wang, C. X., Laurenson, D. I., Ge, X., & Zhao, F. (2010). Space-time correlation properties of a 3D two-sphere model for non-isotropic MIMO mobile-to-mobile channels. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM) (pp. 1–5). IEEE.

  53. Zajić, A. G., & Stüber, G. L. (2006). Space-time correlated MIMO mobile-to-mobile channels. In Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1–5).

  54. Zajić, A. G., & Stüber, G. L. (2008). Space-time correlated mobile-to-mobile channels: Modelling and simulation. IEEE Transactions on Vehicular Technology, 57(2), 715–726.

    Article  Google Scholar 

  55. Zajić, A. G., & Stüber, G. L. (2008). Three-dimensional modeling, simulation, and capacity analysis of space-time correlated mobile-to-mobile channels. IEEE Transactions on Vehicular Technology, 57(4), 2042–2054.

    Article  Google Scholar 

  56. Zajić, A. G., & Stüber, G. L. (2008). Three-dimensional modeling, simulation, and capacity analysis of space-time correlated mobile-to-mobile channels. IEEE Trans. Veh. Technol., 57(4), 2042–2054. doi:10.1109/TVT.2007.912150.

    Article  Google Scholar 

  57. Zajic, A. G., & Stuber, G. L. (2009). Three-dimensional modeling and simulation of wideband MIMO mobile-to-mobile channels. IEEE Transactions on Wireless Communications, 8(3), 1260–1275.

    Article  Google Scholar 

  58. Zhou, J., Jiang, H., & Kikuchi, H. (2015). Generalised three-dimensional scattering channel model and its effects on compact multiple-input and multiple-output antenna receiving systems. IET Communications, 9(18), 2177–2187.

    Article  Google Scholar 

  59. Zhu, M., Eriksson, G., & Tufvesson, F. (2013). The COST 2100 channel model: Parameterization and validation based on outdoor MIMO measurements at 300 MHz. IEEE Transactions on Wireless Communications, 12(2), 888–897.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yaqoob Wani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, M.Y., Khan, N.M. Characterization of 3D Elliptical Spatial Channel Model for MIMO Mobile-to-Mobile Communication Environment. Wireless Pers Commun 96, 6325–6344 (2017). https://doi.org/10.1007/s11277-017-4479-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4479-6

Keywords

Navigation