Skip to main content

Advertisement

Log in

Energy-Harvesting Decode-and-Forward Relaying Under Hardware Impairments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose a decode-and-forward relaying scheme under the effects of hardware impairments. In this proposed scheme, a cooperative relay uses a power-splitting receiver to harvest energy from the radio-frequency signals of a source node and applies a decode-and-forward technique to process the arriving signals. The system performance of the proposed protocol is analyzed in terms of the exact outage probability. Monte Carlo simulation is used to verify the theoretical analysis. Performance evaluations show that the proposed protocol performs best at an optimal power splitting ratio, and outperforms a direct transmission scheme when the relay is far to the destination. The optimal power splitting ratio is obtained more precisely using the golden section search method. In addition, serious effects of hardware impairments robustly diminish the system performance of the proposed protocol and the direct transmission protocol. Finally, the outage probability expressions match the simulation values well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Costa, E., & Pupolin, S. (2002). m-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise. IEEE Transactions on Communications, 50, 462–472.

    Article  Google Scholar 

  2. Schenk, T. (2008). RF imperfections in high-rate wireless systems: Impact and digital compensation. Dordrecht: Springer.

    Book  Google Scholar 

  3. Studer, C., Wenk, M., & Burg, A. (2010). MIMO transmission with residual transmit-RF impairments. International ITG Workshop on Smart Antennas (WSA), 2010, 189–196.

    Article  Google Scholar 

  4. Bjornson, E., Matthaiou, M., & Debbah, M. (2013). A new look at dual-hop relaying: Performance limits with hardware impairments. IEEE Transactions on Communications, 61, 4512–4525.

    Article  Google Scholar 

  5. Matthaiou, M., Papadogiannis, A., Bjornson, E., & Debbah, M. (2013). Two-way relaying under the presence of relay transceiver hardware impairments. IEEE Communications Letters, 17, 1136–1139.

    Article  Google Scholar 

  6. Bjornson, E., Papadogiannis, A., Matthaiou, M., & Debbah, M. (2013). On the impact of transceiver impairments on af relaying. IEEE international conference on acoustics, speech and signal processing (ICASSP) 2013 (pp. 4948–4952).

  7. Kefeng, G., Jin, C., Guoxin, L., & Xueling, W. (2014). Outage analysis of cooperative cellular network with hardware impairments. International conference on information science, electronics and electrical engineering (ISEEE) 2014 (pp. 1416–1420).

  8. Kefeng, G., Jin, C., Yuzhen, H., Guoxin, L., & Nian, L. (2014). Outage and capacity analysis between opportunistic and partial relay cooperative network with hardware impairments. International workshop on high mobility wireless communications (HMWC) 2014 (pp. 78–83).

  9. Duy, T. T., Duong, T. Q., da Costa, D. B., Bao, V. N. Q., & Elkashlan, M. (2015). Proactive relay selection with joint impact of hardware impairment and co-channel interference. IEEE Transactions on Communications, 63, 1594–1606.

    Article  Google Scholar 

  10. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42, 74–80.

    Article  Google Scholar 

  11. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50, 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  12. Duy, T. T., & Kong, H. Y. (2014). Adaptive cooperative decode-and-forward transmission with power allocation under interference constraint. Wireless Personal Communications (WPC), 74, 401–414.

    Article  Google Scholar 

  13. Nguyen, S. Q., & Kong, H. Y. (2015). Outage performance and diversity analysis of cognitive triple-hop cluster-based networks under interference constraint. Wireless Personal Communications (WPC), 85, 1669–1688.

    Article  Google Scholar 

  14. Raghunathan, V., Ganeriwal, S., & Srivastava, M. (2006). Emerging techniques for long lived wireless sensor networks. IEEE Communications Magazine, 44, 108–114.

    Article  Google Scholar 

  15. Paradiso, J., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4, 18–27.

    Article  Google Scholar 

  16. Varshney, L. R. (2008). Transporting information and energy simultaneously. In IEEE international symposium on information theory, 2008 (ISIT 2008), 2008 (pp. 1612–1616).

  17. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61, 4754–4767.

    Article  Google Scholar 

  18. Nasir, A. A., Xiangyun, Z., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12, 3622–3636.

    Article  Google Scholar 

  19. Zhiguo, D., Perlaza, S. M., Esnaola, I., & Poor, H. V. (2014). Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Transactions on Wireless Communications, 13, 846–860.

    Article  Google Scholar 

  20. Zhao, S., Li, Q., Zhang, Q., & Qin, J. (2015). Optimal secure relay beamforming for non-regenerative multi-relay networks with energy harvesting constraint. Wireless Personal Communications (WPC), 85, 2355–2365.

    Article  Google Scholar 

  21. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables and stochastic processes (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  22. Gradshteyn, I. S., Ryzhik, I. M., Jeffrey, A., & Zwillinger, D. (2007). Table of integral, series and products (7th ed.). Amsterdam: Elsevier.

    Google Scholar 

  23. Chong, E. K. P., & Zak, S. H. (2001). An introduction to optimization (2nd ed.). NewYork: Wiley.

    MATH  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number B2017-20-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Ngoc Son.

Appendices

Appendix 1: Proof of Lemma 1

The CDF of the random variable \(X_i\) is expressed as

$$\begin{aligned} {F_{{X_i}}}\left( x \right) &=\Pr \left[ {{X_i}< x} \right] = \Pr \left[ {\frac{{a{g_i}}}{{b{g_i} + c}}< x} \right] = \Pr \left[ {{g_i}\left( {a - bx} \right)< cx} \right] \\&= \left\{ \begin{array}{ll} 1,&a - bx \le 0\\ {F_{{g_i}}}\left( {\frac{{cx}}{{a - bx}}} \right), &a - bx > 0 \end{array} \right. = \left\{ \begin{array}{ll} 1,&x \ge {a / b}\\ 1 - {e^{ - {\lambda _i}\left( {\frac{{cx}}{{a - bx}}} \right) }},&x < {a / b} \end{array} \right.\end{aligned}$$
(32)

Hence, the pdf of \(X_i\) is inferred as

$$\begin{aligned} {f_{{X_i}}}\left( x \right) = \frac{{\partial {F_{{X_i}}}\left( x \right) }}{{\partial x}} = \left\{ \begin{array}{ll} 0,&x \ge {a / b}\\ \frac{{ac{\lambda _i}}}{{{{\left( {a - bx} \right) }^2}}}{e^{ - {\lambda _i}\left( {\frac{{cx}}{{a - bx}}} \right) }},&x < {a/b} \end{array} \right. \end{aligned}$$
(33)

From (32) and (33), Lemma 1 is completely proven.

Appendix 2: Proof of Lemma 2

The joint CDF of the random variable Z and the condition \({g_1} \ge {\theta _1}\) is expressed as

$$\begin{aligned} {F_{Z,{g_1} \ge {\theta _1}}}\left( z \right)&= \Pr \left[ {Z< z,{g_1} \ge {\theta _1}} \right] = \Pr \left[ {\frac{{\rho \eta \gamma {g_1}{g_2}}}{{\rho \eta \gamma {K^2}{g_1}{g_2} + 1 + \mu }}< z,{g_1} \ge {\theta _1}} \right] \\&= \Pr \left[ {\rho \eta \gamma {g_1}{g_2}\left( {1 - {K^2}z} \right) < \left( {1 + \mu } \right) z,{g_1} \ge {\theta _1}} \right] \end{aligned} $$
(34)

From (34), when \(\left( {1 - {K^2}z} \right) \ge 0\) or \(z \ge {K^{ - 2}}\), then \({F_{Z,{g_i} \ge {\theta _1}}}\left( z \right) = 1\).

Considering \(z < {K^{ - 2}}\), \({F_{Z,{g_i} \ge {\theta _1}}}\left( z \right) \) in (34) is obtained as

$$\begin{aligned} {F_{Z,{g_i} \ge {\theta _1}}}\left( z \right)&= \Pr \left[ {{g_2} < \underbrace{{{\left( {1 + \mu } \right) } / {\left( {\rho \eta \gamma } \right) }}}_{{\theta _2}} \times \frac{1}{{{g_1}}} \times \frac{z}{{1 - {K^2}z}},{g_i} \ge {\theta _1}} \right] \\&= \int \limits _{{\theta _1}}^\infty {{f_{{g_1}}}\left( t \right) \times {F_{{g_2}}}\left( {\frac{{{\theta _2}}}{t} \times \frac{z}{{1 - {K^2}z}}} \right) dt} \\&= \int \limits _{{\theta _1}}^\infty {{f_{{g_1}}}\left( t \right) } \times \left\{ {1 - {e^{ - {\lambda _2}\left( {\frac{{{\theta _2}}}{t} \times \frac{z}{{1 - {K^2}z}}} \right) }}} \right\} dt\\&= 1 - {F_{{g_1}}}\left( {{\theta _1}} \right) - {\lambda _1}\int \limits _{{\theta _1}}^\infty {{e^{ - {\lambda _1}t - \frac{{{\lambda _2}{\theta _2}}}{t} \times \frac{z}{{1 - {K^2}z}}}}dt} \\&= {e^{ - {\lambda _1}{\theta _1}}} - {\lambda _1}\left\{ {\int \limits _0^\infty {{e^{ - {\lambda _1}t - \frac{{{\lambda _2}{\theta _2}}}{t} \times \frac{z}{{1 - {K^2}z}}}}dt} - \int \limits _0^{{\theta _1}} {{e^{ - {\lambda _1}t - \frac{{{\lambda _2}{\theta _2}}}{t} \times \frac{z}{{1 - {K^2}z}}}}dt} } \right\} \\&= {e^{ - {\lambda _1}{\theta _1}}} + {\lambda _1}\int \limits _0^{{\theta _1}} {{e^{ - {\lambda _1}t - \frac{{{\lambda _2}{\theta _2}}}{t} \times \frac{z}{{1 - {K^2}z}}}}dt} - 2\sqrt{\frac{{{\lambda _1}{\lambda _2}{\theta _2}z}}{{1 - {K^2}z}}} \times {K_1}\left( {2\sqrt{\frac{{{\lambda _1}{\lambda _2}{\theta _2}z}}{{1 - {K^2}z}}} } \right)\end{aligned}$$
(35)

where \(K_v(x)\) is a v-order modified Bessel function of the second kind [22, Eq. (8.432.6)].

From (34) and (35), Lemma 1 is proven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, P.N., Kong, H.Y. Energy-Harvesting Decode-and-Forward Relaying Under Hardware Impairments. Wireless Pers Commun 96, 6381–6395 (2017). https://doi.org/10.1007/s11277-017-4483-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4483-x

Keywords

Navigation