Skip to main content

Advertisement

Log in

Cell Free Massive MIMO with Constrained Coverage

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

As new generations of mobile radio come into service, bandwidth is becoming more and more scarce and systems with very high spectral efficiency become vital. Having a high spectral efficiency, Massive MIMO has shown to be a promising candidate for 5G. Distributing antennas in such systems make them even more spectrally efficient. Cell free Massive MIMO distributes antennas to cover all users in an area without the need to divide the area into cells. Realization of such systems in practice requires some big challenges to be resolved first. One of them is the antenna assignment to the users, which is studied in this paper. In this paper, mathematical relations for the joint optimization problem of antenna assignment and power-weight allocation are derived. In order to make the problem solvable, it is separated into two sub-problems: antenna assignment and power-weight allocation. Results show that the proposed sub-optimum algorithms for antenna assignment and the power-weight allocation can in fact be very effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goldsmith, A., Jafar, S. A., Jindal, N., & Vishwanath, S. (2003). Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications, 21(5), 684–702.

    Article  MATH  Google Scholar 

  2. Spencer, Q. H., Peel, C. B., Swindlehurst, A. L., & Haardt, M. (2004). An introduction to the multi-user MIMO downlink. IEEE Communications Magazine, 42(10), 60–67.

    Article  Google Scholar 

  3. Ghosh, A., et al. (2012). Heterogeneous cellular networks: From theory to practice. IEEE Communications Magazine, 50(6), 54–64.

    Article  Google Scholar 

  4. Saraydar, C. U., & Yener, A. (2001). Adaptive cell sectorization for CDMA systems. IEEE Journal on Selected Areas in Communications, 19(6), 1041–1051.

    Article  Google Scholar 

  5. Chan, G. K. (1992). Effects of sectorization on the spectrum efficiency of cellular radio systems. IEEE Transactions on Vehicular Technology, 41(3), 217–225.

    Article  MathSciNet  Google Scholar 

  6. Van Veen, B. D., & Buckley, K. M. (1998). Beamforming: A versatile approach to spatial filtering. IEEE ASSP Magazine, 5(2), 4–24.

    Article  Google Scholar 

  7. Wang, H., Li, L., Wang, J., Song, L., Ma, Y., & Zhou, Z. (2011). A transmit precoding scheme for downlink multiuser MIMO systems. In Vehicular technology conference (VTC Fall), San Francisco, CA (pp. 1–5).

  8. Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  9. Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.

    Article  Google Scholar 

  10. Rusek, F., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  11. Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

    Article  Google Scholar 

  12. Jungnickel, V., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.

    Article  Google Scholar 

  13. Swindlehurst, A. L., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive MIMO: The next wireless revolution? IEEE Communications Magazine, 52(9), 56–62.

    Article  Google Scholar 

  14. Wang, C. X., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.

    Article  Google Scholar 

  15. Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.

    Article  Google Scholar 

  16. Qiao, D., Wu, Y., & Chen, Y. (2014). Massive MIMO architecture for 5G networks: Co-located, or distributed? In 2014 11th International Symposium on Wireless Communications Systems (ISWCS), Barcelona (pp. 192–197).

  17. Truong, K. T., & Heath, R. W. (2013). The viability of distributed antennas for massive MIMO systems. In 2013 Asilomar conference on signals, systems and computers, Pacific Grove, CA (pp. 1318–1323).

  18. Kamga, G. N., Xia, M., & Assa, S. (2016). Spectral-efficiency analysis of massive MIMO systems in centralized and distributed schemes. IEEE Transactions on Communications, 64(5), 1930–1941.

    Article  Google Scholar 

  19. Madhow, U., Brown, D. R., Dasgupta, S., & Mudumbai, R. (2014). Distributed massive MIMO: Algorithms, architectures and concept systems. In Information theory and applications workshop (ITA), San Diego, CA (pp. 1–7).

  20. Saleh, A. A. M., et al. (1987). Distributed antennas for indoor radio communications. IEEE Transactions on Communications, 35(12), 1245–1251.

    Article  Google Scholar 

  21. Choi, W., & Andrews, J. G. (2007). Downlink performance and capacity of distributed antenna systems in a multicell environment. IEEE Transactions on Wireless Communications, 6(1), 69–73.

    Article  Google Scholar 

  22. Zhuang, Hairuo, Dai, Lin, Xiao, Liang, & Yao, Yan. (2003). Spectral efficiency of distributed antenna system with random antenna layout. Electronics Letters, 39(6), 495–496.

    Article  Google Scholar 

  23. Zhang, J., & Andrews, J. G. (2008). Distributed antenna systems with randomness. IEEE Transactions on Wireless Communications, 7(9), 3636–3646.

    Article  Google Scholar 

  24. Lee, S. R., Moon, S. H., Kim, J. S., & Lee, I. (2012). Capacity analysis of distributed antenna systems in a composite fading channel. IEEE Transactions on Wireless Communications, 11(3), 1076–1086.

    Article  Google Scholar 

  25. Wang, D., Wang, J., You, X., Wang, Y., Chen, M., & Hou, X. (2013). Spectral efficiency of distributed MIMO systems. IEEE Journal on Selected Areas in Communications, 31(10), 2112–2127.

    Article  Google Scholar 

  26. Heath, R., Peters, S., Wang, Y., & Zhang, J. (2013). A current perspective on distributed antenna systems for the downlink of cellular systems. IEEE Communications Magazine, 51(4), 161–167.

    Article  Google Scholar 

  27. Heath, R. W, Jr., Wu, T., Kwon, Y. H., & Soong, A. C. K. (2011). Multiuser MIMO in distributed antenna systems with out-of-cell interference. IEEE Transactions on Signal Processing, 59(10), 4885–4899.

    Article  MathSciNet  Google Scholar 

  28. Marsch, P., & Fettweis, G. (2007). A framework for optimizing the downlink performance of distributed antenna systems under a constrained backhaul. Proceedings of European wireless conference, Glasgow (pp. 975–979).

  29. Elijah, O., Leow, C. Y., Rahman, T. A., Nunoo, S., & Iliya, S. Z. (2016). A comprehensive survey of pilot contamination in massive MIMO5G system. IEEE Communications Surveys and Tutorials, 18(2), 905–923.

    Article  Google Scholar 

  30. Zhou, T., Peng, M., Wang, W., & Chen, H. H. (2013). Low-complexity coordinated beamforming for downlink multicell SDMA/OFDM systems. IEEE Transactions on Vehicular Technology, 62(1), 247–255.

    Article  Google Scholar 

  31. Huh, H., Tulino, A. M., & Caire, G. (2012). Network MIMO with linear zero-forcing beamforming: Large system analysis, impact of channel estimation, and reduced-complexity scheduling. IEEE Transactions on Information Theory, 58(5), 2911–2934.

    Article  MATH  MathSciNet  Google Scholar 

  32. Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2015). Cell-Free massive MIMO: Uniformly great service for everyone. 2015 IEEE 16th international workshop on signal processing advances in wireless communications (SPAWC), Stockholm (pp. 201–205).

  33. Nayebi, E., Ashikhmin, A., Marzetta, T. L., & Yang, H. (2015). Cell-Free massive MIMO systems. 2015 49th Asilomar conference on signals, systems and computers, Pacific Grove, CA (pp. 695–699).

  34. Rogalin, R., et al. (2014). Scalable synchronization and reciprocity calibration for distributed multiuser MIMO. IEEE Transactions on Wireless Communications, 13(4), 1815–1831.

    Article  Google Scholar 

  35. Jungnickel, V., Wirth, T., Schellmann, M., Haustein, T., & Zirwas, W. (2008). Synchronization of cooperative base stations. IEEE international symposium on wireless communication systems, Reykjavik (pp. 329–334).

  36. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge University Press.

    Book  MATH  Google Scholar 

  37. Horn, R. A., & Johnson, C. R. (1991). The Hadamard product. In Topics in matrix analysis (pp. 304–306). New York: Cambridge University Press.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliazam Abbasfar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroujerdi, M.N., Abbasfar, A. & Ghanbari, M. Cell Free Massive MIMO with Constrained Coverage. Wireless Pers Commun 97, 333–348 (2017). https://doi.org/10.1007/s11277-017-4507-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4507-6

Keywords

Navigation