Skip to main content
Log in

Machine-to-Machine Communication and Research Challenges: A Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In recent years, with the proliferation of machine-to-machine (M2M) applications into industries, M2M communications has attracted researchers in this prominent field of research. M2M communications has emerged to achieve ubiquitous communication among intelligent devices to monitor applications with little or no human intervention. The autonomous characteristics of M2M communications, which decrease the cost for human resource significantly, give impetus for the research of M2M communications in both industry and academic areas. This paper focuses on state-of-the-art M2M technologies, future challenges and envisioned opportunities. We have divided M2M communications into two categories, namely, capillary M2M and cellular M2M. In this paper, we provide a comprehensive study of M2M communications, including different categories and their challenges. This paper also investigates into the standards defined by the standardization organizations, such as IEEE, IETF, 3GPP for the multiplicity of M2M communications. At last, we analyze and discuss the key research challenges in M2M application designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.

    Article  Google Scholar 

  2. Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.

    Article  Google Scholar 

  3. Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The internet of things—A survey of topics and trends. Information Systems Frontiers, 17(2), 261–274.

    Article  Google Scholar 

  4. Carvallo, A., & Cooper, J. (2015). The advanced smart grid: Edge power driving sustainability. Norwood, MA: Artech House.

    Google Scholar 

  5. Suciu, G., Suciu, V., Martian, A., Craciunescu, R., Vulpe, A., Marcu, I., et al. (2015). Big data, internet of things and cloud convergence—An architecture for secure e-health applications. Journal of Medical Systems, 39(11), 1–8.

    Article  Google Scholar 

  6. Djahel, S., Doolan, R., Muntean, G.-M., & Murphy, J. (2015). A communications-oriented perspective on traffic management systems for smart cities: challenges and innovative approaches. IEEE Communications Surveys & Tutorials, 17(1), 125–151.

    Article  Google Scholar 

  7. Andreev, S., Galinina, O., Pyattaev, A., Gerasimenko, M., Tirronen, T., Torsner, J., et al. (2015). Understanding the IoT connectivity landscape: A contemporary M2M radio technology roadmap. IEEE Communications Magazine, 53(9), 32–40.

    Article  Google Scholar 

  8. Lee, E. K., Choi, H. R., Kim, J. J., & Kim, C. S. (2015). A study on the performance evaluation of container tracking device based on M2M. In IEEE 17th international conference on advanced communication technology (ICACT) (pp. 500–504).

  9. Alexiou, A. (2014). Wireless World 2020: Radio interface challenges and technology enablers. IEEE Vehicular Technology Magazine, 9(1), 46–53.

    Article  Google Scholar 

  10. Boswarthick, D., Elloumi, O., & Hersent, O. (2012). M2M communications: A systems approach. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  11. Nhat-Hai, N., Quoc-Tuan, T., Leger, J. M., & Tan-Phu, V. (2010). A real-time control using wireless sensor network for intelligent energy management system in buildings. IEEE workshop on environmental energy and structural monitoring systems (EESMS) (pp. 87–92). September 9, 2010.

  12. Accettura, N., Palattella, M. R., Dohler, M., Grieco, L. A., & Boggia, G. (2012). Standardized power-efficient & internet-enabled communication stack for capillary M2M networks. In proceedings of the IEEE wireless communications and networking conference workshops (WCNCW’12) (pp. 226–231).

  13. Taleb, T., & Kunz, A. (2012). Machine type communications in 3GPP networks: potential, challenges, and solutions. IEEE Communications Magazine, 50(3), 178–184.

    Article  Google Scholar 

  14. Lien, S.-Y., & Chen, K.-C. (2011). Massive access management for QoS guarantees in 3GPP machine-to-machine communications. IEEE Communications Letters, 15(3), 311–313.

    Article  Google Scholar 

  15. Lai, C., Lu, R., Zheng, D., & Li, H. (2015). Toward secure large-scale machine-to-machine comm unications in 3GPP networks: Chall enges and solutions. IEEE Communications Magazine, 53(12), 12–19.

    Article  Google Scholar 

  16. Kim, J., Lee, J., Kim, J., & Yun, J. (2014). M2M service platforms: Survey, issues, and enabling technologies. IEEE Communications Surveys & Tutorials, 16(1), 61–76.

    Article  Google Scholar 

  17. Aijaz, A., & Aghvami, A. H. (2015). Cognitive machine-to-machine communications for internet-of-things: A protocol stack perspective. IEEE Internet of Things Journal, 2(2), 103–112.

    Article  Google Scholar 

  18. Chen, K.-C., & Lien, S.-Y. (2014). Machine-to-machine communications: Technologies and challenges. Ad Hoc Networks, 18, 3–23.

    Article  Google Scholar 

  19. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A. V., McCann, J. A., & Leung, K. K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.

    Article  Google Scholar 

  20. Zheng, K., Hu, F., Wang, W., Xiang, W., & Dohler, M. (2012). Radio resource allocation in LTE-advanced cellular networks with M2M communications. IEEE Communications Magazine, 50(7), 184–192.

    Article  Google Scholar 

  21. Ho, C. Y., & Huang, C.-Y. (2012). Energy-saving massive access control and resource allocation schemes for M2M communications in OFDMA cellular networks. IEEE Wireless Communications Letters, 1(3), 209–212.

    Article  Google Scholar 

  22. Ratasuk, R., Prasad, A., Li, Z., Ghosh, A., & Uusitalo, M. (2015) Recent advancements in M2M communications in 4G networks and evolution towards 5G. In 2015 IEEE 18th international conference on intelligence in next generation networks (ICIN) (pp. 52–57).

  23. Zhang, Y., Yu, R., Xie, S., Yao, W., Xiao, Y., & Guizani, M. (2011). Home M2M networks: Architectures, standards, and QoS improvement. IEEE Communications Magazine, 49(4), 44–52.

    Article  Google Scholar 

  24. Ghavimi, F., & Chen, H.-H. (2015). M2M communications in 3GPP LTE/LTE-A networks: Architectures, service requirements, challenges, and applications. IEEE Communications Surveys & Tutorials, 17(2), 525–549.

    Article  Google Scholar 

  25. Prabhakaran, S., & Bhaskaran, N. (2015). UWB antennas with band notch characteristics—A study. Journal of Network Communications and Emerging Technologies (JNCET), 4(2) www.jncet.org.

  26. Gebali, F. (2015). Modeling IEEE 802.11 (WiFi) Protocol. In Analysis of computer networks. Cham: Springer.

  27. Qiao, B., & Ma, K. (2015) An enhancement of the ZigBee wireless sensor network using bluetooth for industrial field measurement. 2015 IEEE MTT-S international microwave workshop series on advanced materials and processes for RF and THz applications (IMWS-AMP) (pp. 1–3).

  28. Mahajan, N., & Kaur, J. (2015). A review of 2.4 GHz transmitters for IEEE 802.15. 4 Low Rate WPANs. In 2015 second international conference on advances in computing and communication engineering (ICACCE) (pp. 28–33).

  29. Machado, R. G., & Wyglinski, A. M. (2015). Software-defined radio: Bridging the analog–digital divide. Proceedings of the IEEE, 103(3), 409–423.

    Article  Google Scholar 

  30. Niyato, D., Xiao, L., & Wang, P. (2011). Machine-to-machine communications for home energy management system in smart grid. IEEE Communications Magazine, 49(4), 53–59.

    Article  Google Scholar 

  31. Khorov, E., Lyakhov, A., Krotov, A., & Guschin, A. (2015). A survey on IEEE 802.11 ah: An enabling networking technology for smart cities. Computer Communications, 58, 53–69.

    Article  Google Scholar 

  32. Aust, S., Prasad, R. V., & Niemegeers, I. G. (2012). IEEE 802.11 ah: Advantages in standards and further challenges for sub 1 GHz Wi-Fi. In 2012 IEEE international conference on communications (ICC) (pp. 6885–6889).

  33. Sun, W., Choi, M., & Choi, S. (2013). IEEE 802.11 ah: A long range 802.11 WLAN at Sub 1 GHz. Journal of ICT Standardization, 1(1), 83–108.

    Article  Google Scholar 

  34. Togashi, M. (2016). Visible light transmitter, visible light receiver, visible light communication system, and visible light communication method. US Patent 9,232,202. https://www.google.com/patents/US9232202.

  35. Torabi, N., Rostamzadeh, K., & Leung, V. (2015). Ieee 802.15. 4 beaconing strategy and the coexistence problem in ism band. IEEE Transactions on Smart Grid, 6(3), 1463–1472.

    Article  Google Scholar 

  36. Mišić, V. B., Mišić, J., Lin, X., & Nerandzic, D. (2012). Capillary machine-to-machine communications: The road ahead. In Ad hoc, mobile, and wireless networks (pp. 413–423): Springer.

  37. IEEE Std 802.15.4-2006. IEEE standard for information technology—local and metropolitan area networks—specific requirements—part 15.4: Wireless medium access control (mac) and physical layer (phy) specifications for low rate wireless personal area networks (wpans). (Revision of IEEE Std 802.15.4-2003) (pp. 1–320).

  38. Ko, J. G., Terzis, A., Dawson-Haggerty, S., Culler, D. E., Hui, J. W., & Levis, P. (2011). Connecting low-power and lossy networks to the internet. IEEE Communications Magazine, 49(4), 96–101.

    Article  Google Scholar 

  39. Gaddour, O., & Koubâa, A. (2012). RPL in a nutshell: A survey. Computer Networks, 56(14), 3163–3178.

    Article  Google Scholar 

  40. Ko, J., Terzis, A., Dawson-Haggerty, S., Culler, D. E., Hui, J. W., & Levis, P. (2011). Connecting low-power and lossy networks to the internet. IEEE Communications Magazine, 49(4), 96–101.

    Article  Google Scholar 

  41. Bormann, C., Castellani, A. P., & Shelby, Z. (2012). Coap: An application protocol for billions of tiny internet nodes. IEEE Internet Computing, 16(2), 62.

    Article  Google Scholar 

  42. Gritzalis, S., & Spinellis, D. (1997). Addressing threats and security issues in world wide web technology. In S. Katsikas (Ed.), Communications and multimedia security. IFIP advances in information and communication technology. Boston, MA: Springer.

    Google Scholar 

  43. Shelby, Z. (2012). Constrained RESTful environments (CoRE) link format. RFC6690, IETF standards, CoRE working group.

  44. Banerjee, A., Nguyen, B., Gopalakrishnan, V., Kasera, S., Lee, S., & Van der Merwe, J. (2015). Efficient, adaptive and scalable device activation for M2M communications. In 2015 12th annual IEEE international conference on sensing, communication, and networking (SECON) (pp. 399–407).

  45. Bhat, P., & Dohler, M. (2015). Overview of 3GPP machine-type communication standardization. In C. Anton-Haro & M. Dohler (Eds.), Machine-to-machine (M2M) Communications. Architecture, Performance and Applications (pp. 47–62).

  46. Shariatmadari, H., Ratasuk, R., Iraji, S., Laya, A., Taleb, T., Jäntti, R., et al. (2015). Machine-type communications: Current status and future perspectives toward 5G systems. IEEE Communications Magazine, 53(9), 10–17.

    Article  Google Scholar 

  47. Vassaki, S., Pitsiladis, G., Sagkriotis, S. E., & Panagopoulos, A. D. (2015). Future M2M Communication networks: Spectrum sharing, random. Handbook of research on next generation mobile communication systems (p. 149). Hershey, PA: IGI Global.

    Google Scholar 

  48. Lien, S.-Y., Liau, T.-H., Kao, C.-Y., & Chen, K.-C. (2012). Cooperative access class barring for machine-to-machine communications. IEEE Transactions on Wireless Communications, 11(1), 27–32.

    Article  Google Scholar 

  49. Zhang, N., Cheng, N., Gamage, A. T., Zhang, K., Mark, J. W., & Shen, X. (2015). Cloud assisted HetNets toward 5G wireless networks. IEEE Communications Magazine, 53(6), 59–65.

    Article  Google Scholar 

  50. Singh, S., & Huang, K.-L. A robust M2M gateway for effective integration of capillary and 3GPP networks. (2011). In IEEE 5th international conference on advanced networks and telecommunication systems (ANTS) (pp. 1–3).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Han Joo Chong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Kumar, A., Ristaniemi, T. et al. Machine-to-Machine Communication and Research Challenges: A Survey. Wireless Pers Commun 97, 3569–3585 (2017). https://doi.org/10.1007/s11277-017-4686-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4686-1

Keywords

Navigation