Skip to main content
Log in

Analytical Approximation for Capacity in Massive MIMO Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In most existing research on massive multiple-input multiple-output (MIMO) systems, theoretical analysis relies on the assumption that the number of antennas at the base station is infinite. Under this assumption, channel vectors for different users will be asymptotically orthogonal; therefore, the calculation of channel capacity can be greatly simplified. However, in practical systems, the number of antennas is always finite, and the channel vectors for different users cannot be completely orthogonal. In this paper, we propose an analytical approximation for the channel capacity of massive MIMO systems, with a finite number of antennas. Numerical results show that the derived closed-form expression is more accurate than the one assuming that the channel vectors are asymptotically orthogonal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mietzner, J., Schober, R., Lampe, L., et al. (2009). Multiple-antenna techniques for wireless communications—A comprehensive literature survey. IEEE Communications Surveys & Tutorials, 11(2), 87–105.

    Article  Google Scholar 

  2. Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.

    Article  Google Scholar 

  3. Goldsmith, A., Jafar, S. A., Jindal, N., et al. (2003). Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications, 21(5), 684–702.

    Article  Google Scholar 

  4. Gesbert, D., Bolcskei, H., Gore, D. A., et al. (2002). Outdoor MIMO wireless channels: Models and performance prediction. IEEE Transactions on Communications, 50(12), 1926–1934.

    Article  Google Scholar 

  5. Gesbert, D., Shafi, M., Shiu, D., et al. (2003). From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 21(3), 281–302.

    Article  Google Scholar 

  6. Lu, L., Li, G. Y., Swindlehurst, A. L., et al. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  7. Raghavan, V., & Sayeed, A. M. (2011). Sublinear capacity scaling laws for sparse MIMO channels. IEEE Transactions on Information Theory, 57(1), 345–364.

    Article  MathSciNet  Google Scholar 

  8. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  9. Hampton, J. R. (2013). Introduction to MIMO communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  10. Rusek, F., Persson, D., Lau, B. K., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  11. Liu, Y., Tan, Z., Hu, H., et al. (2014). Channel estimation for OFDM. IEEE Communications Surveys & Tutorials, 16(4), 1891–1908.

    Article  Google Scholar 

  12. Withers, C. S., & Nadarajah, S. (2010). Expansions for functions of determinants of power series. Canadian Applied Mathematics Quarterly, 18(1), 107–113.

  13. Mendel, J. M. (1991). Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications. Proceedings of the IEEE, 79(3), 278–305.

    Article  Google Scholar 

  14. Liu, Y., Li, G. Y., Tan, Z., et al. (2015). Noise power estimation in SC-FDMA systems. IEEE Wireless Communications Letters, 4(2), 217–220.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by National High-tech R&D Program of China (863 Program) (Grant No. 2014AA01A706), National Natural Science Foundation of China (Grant No. 61471027), Fundamental Research Funds for the Central Universities (Grant No. 2017JBM306), Southeast University National Mobile Communications Research Laboratory Research Fund (Grant No. 2014D05), Beijing Municipal Natural Science Foundation (Grant No. 4152043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Liu.

Appendices

Appendix 1

Substituting (7) into the term of \({\mathrm {E_H}}\left( \mathbf{{\Delta }} \right)\) in Eq. (10), we obtain

$$\begin{aligned} {\mathrm {E}}\left\{ {{{[{\mathbf {\Delta }}]}_{(i,j)}}} \right\} \nonumber &={\mathrm {E}}\left[ {\frac{1}{M}{{\mathbf {h}}_{{i}}}^\dag {{\mathbf {h}}_{{j}}} - \delta (i - j)} \right] \nonumber \\ &=\frac{1}{M}{\mathrm {E}}\left( {{{\mathbf {h}}_{{i}}}^\dag {{\mathbf {h}}_{{j}}}} \right) - \delta (i - j), \end{aligned}$$
(14)

where \({\mathbf{{h}}_{{i}}}\) and \({\mathbf{{h}}_{{j}}}\) represent the channel responses of the i-th and j-th users.

(14) can be rewritten as

$$\begin{aligned} \mathrm {E}\left\{ {{{\left[ \mathbf{{\Delta }} \right] }_{\left( {i,j} \right) }}} \right\} \nonumber&= \frac{1}{M}{\mathrm {E}}\left( {\sum \limits _{m = 1}^M {h_{im}^*{h_{jm}}} } \right) - \delta (i - j)\\ \nonumber&= \frac{1}{M}\sum \limits _{m = 1}^M {{\mathrm {E}}(h_{im}^*){\mathrm {E}}({h_{jm}})} - \delta (i - j)\\ \nonumber&= \frac{1}{M}\left[ {\mathrm{{M}}\delta (i - j)} \right] - \delta (i - j)\\&= 0. \end{aligned}$$
(15)

This completes the proof of Eq. (11).

Appendix 2

From (7), the expressions of \({\left[ {\mathbf {\Delta }} \right] _{\left( {i,p} \right) }}\) and \({\left[ {\mathbf {\Delta }} \right] _{\left( {p,j} \right) }}\) can be given by

$$\begin{aligned} {\left[ {\mathbf {\Delta }} \right] _{\left( {i,p} \right) }} = \frac{1}{M}{\mathbf{{h}}_{{i}}}^\dag {\mathbf{{h}}_{{p}}} - \delta (i - p). \end{aligned}$$
(16)
$$\begin{aligned} {\left[ {\mathbf {\Delta }} \right] _{\left( {p,j} \right) }} = \frac{1}{M}{\mathbf{{h}}_{{p}}}^\dag {\mathbf{{h}}_{{j}}} - \delta (p-j). \end{aligned}$$
(17)

Substituting (16) and (17) into \({\mathrm {E_H}}\left( {{\mathbf{{\Delta }}^2}} \right)\) in (12), we have

$$\begin{aligned}&{\mathrm {E_\mathbf {H}}}\left\{ {{{\left[ \mathbf{{\Delta }}^2 \right] }_{\left( {i,j} \right) }}} \right\} \nonumber \\&\quad = {\mathrm {E_\mathbf {H}}}\left\{ {\sum \limits _{p = 1}^K {{{\left[ \mathbf{{\Delta }} \right] }_{\left( {i,p} \right) }}{{\left[ \mathbf{{\Delta }} \right] }_{\left( {p,j} \right) }}} } \right\} \nonumber \\&\quad = {E_\mathbf {H}}\left\{ {\sum \limits _{p = 1}^K {\left[ {\frac{1}{{{M^2}}}{} \mathbf{{h}}_i^\dag {\mathbf{{h}}_p}{} \mathbf{{h}}_p^\dag {\mathbf{{h}}_j} - \frac{1}{M}\delta (i - p)\mathbf{{h}}_p^\dag {\mathbf{{h}}_j}} \right. } } \right. \nonumber \\&\qquad \left. {\left. { - \frac{1}{M}\delta (p - j)\mathbf{{h}}_i^\dag {\mathbf{{h}}_p} + \delta (i - p)\delta (p - j)} \right] } \right\} \end{aligned}$$
(18)

Using the relation between moment and cumulant [7], the first term in (18) is obtained as

$$\begin{aligned}&\frac{1}{{{M^2}}}{\mathrm {E_\mathbf {H}}}\left( {\mathbf{{h}}_{{i}}^{\dag }{\mathbf{{h}}_{{p}}}{} \mathbf{{h}}_{{p}}^{\dag }{\mathbf{{h}}_{{j}}}} \right) \nonumber \\&\quad = \frac{1}{{{M^2}}}\sum \limits _{{m_1} = 1}^M {\sum \limits _{{m_2} = 1}^M {{\mathrm {E_\mathbf {H}}}} } \left( {h_{i{m_1}}^*{h_{p{m_1}}}h_{p{m_2}}^*{h_{j{m_2}}}} \right) \nonumber \\&\quad = \frac{1}{{{M^2}}}\sum \limits _{{m_1} = 1}^M {\sum \limits _{{m_2} = 1}^M {\left\{ {{\mathrm {E_\mathbf {H}}}\left( {\left. {h_{i{m_1}}^*{h_{p{m_1}}}} \right) } \right. } \right. } } + {\mathrm {E_\mathbf {H}}}\left( {\left. {h_{p{m_2}}^*{h_{j{m_2}}}} \right) } \right. \nonumber \\&\qquad + {\mathrm {E_\mathbf {H}}}\left( {\left. {h_{i{m_1}}^*{h_{j{m_2}}}} \right) } \right. + \left. {{\mathrm {E_\mathbf {H}}}\left( {\left. {{h_{p{m_1}}}h_{p{m_2}}^*} \right) } \right. } \right\} \nonumber \\&\quad = \delta (i - p)\delta (p - j) + \frac{1}{M}\delta (i - j). \end{aligned}$$
(19)

Similarly,

$$\begin{aligned} \frac{1}{M}{\mathrm {E_\mathbf {H}}}\left[ {\delta (i - p)\mathbf{{h}}_{{p}}^{\dag }{\mathbf{{h}}_{{j}}}} \right]&= \delta (i - p)\delta (p - j), \end{aligned}$$
(20)
$$\begin{aligned} \frac{1}{M}{\mathrm {E_\mathbf {H}}}\left[ {\delta (p - j)\mathbf{{h}}_{{i}}^{\dag }{\mathbf{{h}}_{{p}}}} \right]&= \delta (i - p)\delta (p - j). \end{aligned}$$
(21)

Substituting (19) through (22) into (18), we have

$$\begin{aligned} \mathrm {Tr}\left\{ {{\mathrm {E_\mathbf {H}}}\left[ {{{\left( {{{\mathbf {\Delta }}^2}} \right) }_{\left( {i,j} \right) }}} \right] } \right\} = \frac{{{K^2}}}{M}. \end{aligned}$$
(22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Tao, C., Liu, L. et al. Analytical Approximation for Capacity in Massive MIMO Systems. Wireless Pers Commun 97, 4551–4561 (2017). https://doi.org/10.1007/s11277-017-4737-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4737-7

Keywords

Navigation