Skip to main content
Log in

Redesigned Spatial Modulation for Spatially Correlated Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a new variant of Spatial Modulation (SM) Multiple-Input Multiple-Output (MIMO) transmission technique, designated as Redesigned Spatial Modulation (ReSM) has been proposed. In ReSM scheme, a dynamic mapping for antenna selection is adopted. This scheme employs both single antenna as well as double antenna combinations depending upon channel conditions to combat the effect of spatial correlation. When evaluated over spatially correlated channel conditions, for a fixed spectral efficiency and number of transmit antennas, ReSM exhibits performance improvement of at least 3 dB over all the conventional SM schemes including Trellis Coded Spatial Modulation (TCSM) scheme. Furthermore, a closed form expression for the upper bound on Pairwise Error Probability (PEP) for ReSM has been derived. This has been used to calculate the upper bound for the Average Bit Error Probability (ABEP) for spatially correlated channels. The results of Monte Carlo simulations are in good agreement with the predictions made by analytical results. The relative gains of all the comparison plots in the paper are specified at an ABER of 10−4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mesleh, R. Y., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.

    Article  Google Scholar 

  2. Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., & Hanzo, L. (2014). Spatial modulation genelaralized for MIMO: Opportunities challenges and implementation. Proceedings of the IEEE, 102(1), 56–103.

    Article  Google Scholar 

  3. Younis, A. (2013). Spatial modulation: Theory to practice. (Ph.D thesis, The University of Edinburgh).

  4. Luna-Rivera, J. M & Gonzalez-Perez, M. G. (2012). An improved spatial modulation scheme for MIMO channels. EuCAP.

  5. Luna-Rivera, J. M., Campos-Delgado, D. U., Gonzalez-Perez, M. G. (2013). Constellation design for spatial modulation. In The 2013 iberoamerican conference on electronics engineering and computer science, Elsevier.

  6. Cheng, C. C., Sari, H., Sezginert, S., Su, Y. T. (2014). Enhanced spatial modulation with multiple constellations. In IEEE international black sea conference on communications and networking (BlackSeaCom).

  7. Cheng, C. C., Sari, H., Sezginer, S., & Su, Y. T. (2015). Enhanced spatial modulation with multiple signal constellations. IEEE Transactions on Communications, 63(6), 2237–2248.

    Article  Google Scholar 

  8. Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2014). Quadrature Spatial Modulation. IEEE Transactions on Vehicular Technology, 64, 1. doi:10.1109/TVT.2014.2344036.

    Google Scholar 

  9. Mesleh, R., Di Renzo, M., Haas, H., & Grant, P. M. (2010). Trellis coded spatial modulation. IEEE Transactions on Wireless Communication, 9(7), 2349–2361.

    Article  Google Scholar 

  10. Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Spatial modulation: Optimal detection and performance analysis. IEEE Communications Letters, 12(8), 545–547.

    Article  Google Scholar 

  11. Mesleh, R. et.al. (2009) On the performance of trellis coded spatial modulation. ITG workshop on smart antennas, Berlin Germany.

  12. Afana, A., Atawi, I., Ikki, S. & Mesleh, R. (2015) Energy efficient quadrature spatial modulation MIMO cognitive radio systems with imperfect channel estimation. In IEEE international conference on ubiquitous wireless broadband (ICUWB) (pp. 1–5).

  13. Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2015). Quadrature spatial modulation. IEEE Transactions on Vehicular Technology, 64(6), 2738–2742.

    Article  Google Scholar 

  14. Proakis, J. G. (2000). Digital communications (4th ed.). New York: McGraw–Hill.

    MATH  Google Scholar 

  15. Mobile Broadband Evolution Towards 5G: 3GPP Rel-12 & Rel-13 and Beyond 2015.

  16. Hedayat, A., Shah, H., & Nosratinia, A. (2005). Analysis of space-time coding incorrelated fading channels. IEEE Transactions on Wireless Communications, 4(6), 2882–2891.

    Article  Google Scholar 

  17. Forenza, A. Love, D., Heath, R. Jr. (2004). A low complexity algorithm to simulate the spatial covariance matrix for clustered MIMO channel models. In IEEE vehicular technology conference—VTC 2004-Fall, Los Angeles, CA, USA, May, 2004 (pp. 889–893).

  18. MacLeod, H., Loadman, C., Chen, Z. (2005). Experimental studies of the 2.4-GHz ISM wireless indoor channel. In Proceedings of the 3rd annual communication networks and services research conference (CNSR’05).

  19. Duman, T. M., & Ghrayeb, A. (2007). Coding for MIMO communication systems. Hoboken: Wiley.

    Book  MATH  Google Scholar 

  20. Zelst and, A. V. & Hammerschmidt, J. S. (2002) A single coefficient spatial correlation model for multiple-input multiple-output (MIMO) radio channels. In 27th general assembly of the international union of radio science (URSI), Maastricht, The Netherlands, Aug. 17–24 2002 (pp. 1–4).

  21. Mesleh, R. Y. (2007) Spatial Modulation: A spatial multiplexing technique for efficient wireless data transmission. (Ph.D Thesis, School of Engineering and Science Jacobs University).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Goutham Simha.

Appendix 1

Appendix 1

Proof of Eq. (24)

$$ABER_{ReSM} \le \frac{1}{{2^{\eta } }}\mathop \sum \limits_{{n_{t} s_{t} }} \mathop \sum \limits_{n,s} \frac{{N\left( {x_{{n_{t} s_{t} ,}} x_{n,s} } \right)}}{\eta }E_{H} \left\{ {PEP} \right\}$$
(36)

In this equation, \(n_{t}\) is the active transmit antenna, \(s_{t}\) is the transmit symbol, η is the spectral efficiency. \(N\left( {x_{{n_{t} ,s_{t} ,}} x_{n,s} } \right)\) is the total number of bits in error between \(x_{{n_{t} s_{t} ,}} x_{n,s}\). \(E_{H} \left\{ \cdot \right\}\) is the expectation across the channel matrix \(\varvec{H}\).

PEP is given by

(37)

where

Following from [3] an alternative integral expression of the Q-function and taking the expectation of Eq. (37) we arrive at

$$E_{H} \left\{ {PEP} \right\} = \frac{1}{\pi }\mathop \int \limits_{0}^{{\frac{\pi }{2}}} \varphi \left( { - \frac{1}{{4\sigma_{n}^{2} sin^{2} \left( \theta \right)}}} \right)d\theta$$
(38)

where \(\varphi \left( \cdot \right)\) is the moment generating function (MGF) of the random variable . From [3] it is clear that any i.i.d. Gaussian random variable with mean \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{v}\) and any Hermitian matrix . The MGF then can be written as

(39)

\(L_{v}\) is the covariance matrix of v. From (38) invoking MGF of we can write

(40)

\(I_{n}\) is an \(n \times n\) identity matrix, \({\mathbf{vec}}\left( \varvec{H} \right)\) is the column of matrix \(\varvec{H}\) into a column vector.  \({\mathcal{L}}_{H}\) is the covariance matrix, \(\varvec{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }\) is the mean matrix, \(\otimes\) is the Kronecker product and \(\left( \cdot \right)^{H}\) is the Hermitian.

Making use of the Chernoff bound, PEP then can be written as,

(41)

Finally the upper bound is given by

(42)

1.1 Appendix 2

See Table 6.

Table 6 Mapping followed in ReSM for 6 bpcu employing 16QAM Constellation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simha, G.D.G., Koila, S., Neha, N. et al. Redesigned Spatial Modulation for Spatially Correlated Fading Channels. Wireless Pers Commun 97, 5003–5030 (2017). https://doi.org/10.1007/s11277-017-4762-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4762-6

Keywords

Navigation