Skip to main content
Log in

Localization in Wireless Sensor Networks Using Visible Light in Non-Line of Sight Conditions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a novel method to localize indoor wireless sensor nodes using visible light in non-line of sight (NLOS) condition is proposed. The proposed method is able to identify NLOS condition in a sensor network and subsequently localize the sensor nodes. Since visible light is used for localization, the reflection points are first localized using time difference of arrival in a maximum likelihood framework. The location of the sensor nodes is then estimated using range and reflection angles which are themselves computed using novel geometric methods. Simulations and real field wireless sensor node deployments are then used to evaluate the performance of the proposed method. Experimental results indicate that the proposed method is able to localize sensor nodes with a high degree of accuracy when compared to conventional methods under NLOS conditions. The method also demonstrates reasonable robustness under sensor and ambient noise conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ni, L. M., Liu, Y., Lau, Y. C., & Patil, A. P. (2004). LANDMARC: Indoor location sensing using active RFID. Wireless Networks, 10(6), 701–710.

    Article  Google Scholar 

  2. Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6), 1067–1080.

    Article  Google Scholar 

  3. Mautz, R. (2009). Overview of current indoor positioning systems. Geodezija ir kartografija, 35(1), 18–22.

    Article  Google Scholar 

  4. Yang, J., & Chen, Y. (2009). Indoor localization using improved RSS-based lateration methods. In Global telecommunications conference, 2009. GLOBECOM 2009 (pp. 1–6). IEEE.

  5. Yasir, M., Ho, S. W., & Vellambi, B. N. (2013). Indoor localization using visible light and accelerometer. In 2013 IEEE global communications conference (GLOBECOM) (pp. 3341–3346). IEEE.

  6. Yasir, M., Ho, S. W., & Vellambi, B. N. (2014). Indoor positioning system using visible light and accelerometer. Journal of Lightwave Technology, 32(19), 3306–3316.

    Article  Google Scholar 

  7. Van Haute, T., De Poorter, E., Lemic, F., Handziski, V., Wirstrm, N., Voigt, T., et al. (2015). Platform for benchmarking of RF-based indoor localization solutions. IEEE Communications Magazine, 53(9), 126–133.

    Article  Google Scholar 

  8. Kavehrad, M., Chowdhury, M. I., & Zhou, Z. (2016). Indoor positioning methods using VLC LEDs. In Short-Range Optical Wireless: Theory and Applications (pp. 225–262). Wiley.

  9. Sheinker, A., Ginzburg, B., Salomonski, N., Frumkis, L., Kaplan, B. Z., & Moldwin, M. B. (2016). A method for indoor navigation based on magnetic beacons using smartphones and tablets. Measurement, 81, 197–209.

    Article  Google Scholar 

  10. Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications, 7(5), 28–34.

    Article  Google Scholar 

  11. Agrawal, M., & Konolige, K. (2006). Real-time localization in outdoor environments using stereo vision and inexpensive gps. In 18th International conference on pattern recognition (ICPR’06) (Vol. 3, pp. 1063–1068). IEEE. 2006, pp. 10631068.

  12. Oguejiofor, O., Okorogu, V., Adewale, A., & Osuesu, B. (2013). Outdoor localization system using RSSI measurement of wireless sensor network. International Journal of Innovative Technology and Exploring Engineering, 2(2), 1–6.

    Google Scholar 

  13. Drane, C., Macnaughtan, M., & Scott, C. (1998). Positioning GSM telephones. IEEE Communications Magazine, 36(4), 46–54.

    Article  Google Scholar 

  14. Bahl, P., & Padmanabhan, V. N. (2000). RADAR: An in-building RF-based user location and tracking system. In INFOCOM 2000. Nineteenth annual joint conference of the IEEE computer and communications societies. Proceedings. IEEE (Vol. 2, pp. 775–784).

  15. Vossiek, M., Wiebking, L., Gulden, P., Wieghardt, J., Hoffmann, C., & Heide, P. (2003). Wireless local positioning. IEEE Microwave Magazine, 4(4), 77–86.

    Article  Google Scholar 

  16. Arrue, N., Losada, M., Zamora-Cadenas, L., Jimnez-Irastorza, A., & Vlez, I. (2010). Design of an IR-UWB indoor localization system based on a novel RTT ranging estimator. In 2010 First international conference on sensor device technologies and applications (SENSORDEVICES) (pp. 52–57). IEEE.

  17. Hightower, J., & Borriello, G. (2001). A survey and taxonomy of location systems for ubiquitous computing. IEEE Computer, 34(8), 57–66.

    Article  Google Scholar 

  18. Yazici, A., Yayan, U., & Ycel, H. (2011). An ultrasonic based indoor positioning system. In 2011 international symposium on innovations in intelligent systems and applications (INISTA) (pp. 585–589). IEEE.

  19. Sheinker, A., Ginzburg, B., Salomonski, N., Frumkis, L., & Kaplan, B. Z. (2013). Localization in 2D using beacons of low frequency magnetic field. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 1020–1030.

    Article  Google Scholar 

  20. Clark, R., Trigoni, N., & Markham, A. (2015). Robust vision-based indoor localization. In Proceedings of the 14th international conference on information processing in sensor networks (pp. 378–379). ACM.

  21. Davis, C. P., Chew, W. C., Tucker, W. W., & Atkins, P. R. (2008). A null-field method for estimating underground position. IEEE Transactions on Geoscience and Remote Sensing, 46(11), 3731–3738.

    Article  Google Scholar 

  22. Sogade, J., Vichabian, Y., Vandiver, A., Reppert, P. M., Coles, D., & Morgan, F. D. (2004). Electromagnetic cave-to-surface mapping system. IEEE Transactions on Geoscience and Remote Sensing, 42(4), 754–763.

    Article  Google Scholar 

  23. Jung, S. Y., Hann, S., & Park, C. S. (2011). TDOA-based optical wireless indoor localization using LED ceiling lamps. IEEE Transactions on Consumer Electronics, 57(4), 1592–1597.

    Article  Google Scholar 

  24. Panta, K., & Armstrong, J. (2012). Indoor localisation using white LEDs. Electronics Letters, 48(4), 228–230.

    Article  Google Scholar 

  25. Zhang, W., & Kavehrad, M. (2012). A 2-D indoor localization system based on visible light LED. In 2012 IEEE photonics society summer topical meeting series.

  26. Cossu, G., Presi, M., Corsini, R., Choudhury, P., Khalid, A. M., & Ciaramella, E. (2011). A Visible Light localization aided Optical Wireless system. In GLOBECOM workshops (pp. 802–807).

  27. Maloney, J. E., Hinkle Jr, C. J., & Stevenson, J. O. (2000). US Patent No. 6,108,555. Washington, DC: US Patent and Trademark Office..

  28. Do, T. H., Hwang, J., & Yoo, M. (2013). TDoA based indoor visible light positioning systems. In 2013 Fifth international conference on ubiquitous and future networks (ICUFN) (pp. 456–458). IEEE.

  29. Do, T. H., & Yoo, M. (2014). TDOA-based indoor positioning using visible light. Photonic Network Communications, 27(2), 80–88.

    Article  Google Scholar 

  30. Kahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of the IEEE, 85(2), 265–298.

    Article  Google Scholar 

  31. Gfeller, F. R., & Bapst, U. (1979). Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE, 67(11), 1474–1486.

    Article  Google Scholar 

  32. Rong, P., & Sichitiu, M. L. (2006). Angle of arrival localization for wireless sensor networks. In 2006 3rd annual IEEE communications society on sensor and ad hoc communications and networks (Vol. 1, pp. 374–382). IEEE.

  33. Chan, Y. T., Tsui, W. Y., So, H. C., & Ching, P. C. (2006). Time-of-arrival based localization under NLOS conditions. IEEE Transactions on Vehicular Technology, 55(1), 17–24.

    Article  Google Scholar 

  34. Benesty, J., Chen, J., & Huang, Y. (2008). Microphone array signal processing (Vol. 1). Berlin: Springer.

    Google Scholar 

  35. Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50(1), 100–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh M. Hegde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, O.J., Sharan, R. & Hegde, R.M. Localization in Wireless Sensor Networks Using Visible Light in Non-Line of Sight Conditions. Wireless Pers Commun 97, 6519–6539 (2017). https://doi.org/10.1007/s11277-017-4853-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4853-4

Keywords

Navigation