Skip to main content
Log in

Reliable Data Collection with Mobile Sink Using Seamless Handover in Duty Cycled Based WSNs

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Providing successful data collection in transmitter-initiated wireless sensor networks with mobile Sink (WSN-MS) scenarios is a primary goal of a myriad of critical applications in real world. Unfortunately, the problem of broken links which may occur during data transmission between a source node and a mobile Sink may cause inevitably incomplete data collection. To overcome this challenging issue, we propose in this paper a seamless handover mechanism performed on asynchronous duty cycled MAC protocol on the basis of neighborhood information. By measuring continuously the signal quality of ACKnowledgment messages of transmitted Data during a 1-hop communication, this mechanism allows the source node to continue transmitting data to the mobile Sink using a suitable neighbor node as relay in the case where the Sink node leaves the radio range in direction of that neighbor node. The asynchronous protocol XMAC (without handover) has been chosen as a basic protocol on which we designed our contribution named HXMAC (XMAC with handover). The later was implemented and evaluated using a powerful simulation tool. Experimental results based on the comparison between HXMAC and XMAC clearly showed that handover mechanism is a suitable technique to promote significantly reliability in WSN-MS data collection operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. Because references [30,31,32] are improvement works for the same authors using almost the same idea about handover mechanism.

References

  1. Rawat, P., Deep Singh, K., Chaouchi, H., & Bonnin, J. M. (2014). Wireless sensor networks: A survey on recent developments and potential synergies. Journal of Supercomputing, 68(1), 1–48.

    Article  Google Scholar 

  2. Savarese, C., Rabaey, J., & Langendoen, K. (2002). Robust positioning algorithms for distributed ad-hoc wireless sensor networks. In Proceedings of the USENIX annual conference’02, Monterey, CA, USA, June 10–15. USENIX.

  3. Di Francesco, M., Das, S. K., & Anastazi, G. (2011). Data collection in wireless sensor networks with mobile elements: A survey. ACM Transactions on Sensor Networks, 8(1), 1–31.

    Article  Google Scholar 

  4. De, P., Liu, Y., & Das, S. K. (2010). Energy-efficient reprogramming of a swarm of mobile sensors. IEEE Transactions on Mobile Computing, 9, 703–718.

    Article  Google Scholar 

  5. Dong, Q., & Dargie, W. (2012). A survey on mobility and mobility-aware MAC protocols in wireless sensor networks. IEEE Communications Surveys and Tutorials, 15(01), 88–100.

    Article  Google Scholar 

  6. Getsy, S. S., & Sridharam, D. (2013). Routing in mobile wireless sensor network: A survey. Telecommunication System, 57, 51–79.

    Google Scholar 

  7. Petajajarvi, J., & Karvonen, H. (2011). Soft handover method for mobile wireless sensor networks based on 6LoWPAN. In International conference on distributed computing in sensor systems and workshops (DCOSS’2011), 27–29 June, Bareclona, Spain (pp. 1–6).

  8. Banu Ahmed, S. & Shesasayee, A. (2014). To enhance security in wireless sensor networks with mobile Sink. In 2nd international conference on current trends in engineering and technology (ICCTET’14), July 8, Coimbatore, India (pp. 547-550).

  9. Tang, J., Guo, S., & Yang, Y. (2015). Delivery latency minimization in wireless sensor networks with mobile Sink. In IEEE ICC 2015—Ad hoc and sensor networking symposium, 8–12 June, London (pp. 6481–6486).

  10. Tang, J., Huang, H., Guo, S., & Yang, Y. (2015). Dellat: Delivery latency minimization in wireless sensor networks. Journal of Parallel and Distributed Computing, 83, 133–142.

    Article  Google Scholar 

  11. Szechtman, R., Kress, M., Lin, K., & Cfir, D. (2008). Models of sensor operations for border surveillance. Naval Research Logistics (NRL), 55(1), 27–41.

    Article  MathSciNet  MATH  Google Scholar 

  12. Sun, Z., Wang, P., Vuran, M. C., Al-Rodhaan, M. A., Al-Dhelaan, A. M., & Akyildiz, I. F. (2011). BorderSense: Border patrol through advanced wireless sensor networks. Adhoc Networks Journal, 9(3), 468–477.

    Article  Google Scholar 

  13. Benkic, K., Malajner, M., Planinsic, P., & Cucej, Z. (2008). Using RSSI value for distance estimation in wireless sensor networks based on ZigBee. In Proceedings of IWSSIP 2008, Bratislava, Slovakia, June 25–28 (pp. 303–306). IEEE.

  14. Halder, S. J., Choi, T. Y., Park, J. H., Kang, S. H., Park, S. W., & Park, J. G. (2008). Enhanced ranging using adaptive filter of ZIGBEE RSSI and LQI measurement. In Proceedings of information integration and web-based applications and services, Linz, Austria, November 24–26 (pp. 367–373). ACM.

  15. Raju, M., Oliveira, T., & Agrawal, D. P. (2012). A practical distance estimator through distributed RSSI/LQI processing—An experimental study. In 2nd IEEE international workshop on smart communication protocols and algorithms, 10–15 June, Ottawa, Canada (pp. 6575–6579).

  16. Cho, S., Jang, E. W., & Cioffi, J. M. (2009). Handover in multihop cellular networks. IEEE Communications Magazine, 47(7), 64–73.

    Article  Google Scholar 

  17. Ramani, I., & Savage, S. (2005). Syncscan: Practical fast handoff for 802.11 infrastructure networks. In 24th annual joint conference of the IEEE computer and communications societies (INFOCOM 2005), 13–17 March (pp. 675–684).

  18. Shin, M., Mishra, A., & Arbaugh, W. A. (2004). Improving the latency of 802.11 handoffs using neighbor graphs. In MobiSys.

  19. Sun, Y., Gurewitz, O., & Johnson, D. B. (2008) RI-MAC: A receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. In SenSys’08, November 5–7, 2008.

  20. Fafoutis, X., Di Mairo, A., Vithanage, M. D., & Dragoni, N. (2015). Receiver-initiated medium access control protocols for wireless sensor networks. Computer Networks, 76, 55–74.

    Article  Google Scholar 

  21. Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on-demand distance vector (AODV) routing. RFC 3561.

  22. Johnson, D. B., Maltz, D. A., & Hu, Y.-C. (2004). The dynamic source routing protocol for mobile ad hoc networks (DSR). INTERNET-DRAFT draft-ietf manet-dsr-10.txt.

  23. Bagheri, L., & Takht Fooladi, M. D. (2014). A rendezvous-based data collection algorithms with mobile Sink in wireless sensor networks. In 4th international conference on computer and knowledge engineering (ICCKE’2014), 29–30 October, Mashhad, Iran (pp. 758–762).

  24. Sara, G. S., & Sridharan, D. (2014). Routing in mobile wireless sensor network: A survey. Telecommunication Systems, 57(1), 51–79.

    Article  Google Scholar 

  25. Khan, A. W., Abdullah, A. H., Anisi, M. H., & Bangash, J. I. (2014). A comprehensive study of data collection schemes using mobile Sinks in wireless sensor networks. Sensors, 14, 2510–2548.

    Article  Google Scholar 

  26. Abu Taleb, A., Alhmiedat, T. A., Abu Taleb, R., & Al-haj Hassan, O. (2014). Sink mobility model for wireless sensor networks. Arabian Journal for Science and Engineering, 39(3), 1775–1784.

    Article  Google Scholar 

  27. Silva, R., Sa Silva, J., & Boavida, F. (2014). Mobility in wireless sensor networks—Survey and proposal. Computer Communications Journal, 52, 1–20.

    Article  Google Scholar 

  28. Guerroumi, M., Badache, N., & Moussaoui, S. (2015). mobile Sink and power management for efficient data dissemination in wireless sensor networks. Telecommunication Systems, 58, 279–292. doi:10.1007/s11235-014-9877-4.

    Article  Google Scholar 

  29. Abo-Zahhad, M., Ahmed, S. M., Sabor, N., & Sasaki, S. (2015). Mobile Sink-based adaptive immune energy-efficient clustering protocol for improving the lifetime and stability period of wireless sensor networks. IEEE Sensors Journal, 15(8), 4576–4586.

    Article  Google Scholar 

  30. Dargie, W. (2012). A medium access control protocol that supports a seamless handover in wireless sensor networks. Journal of Networks and Computer Applications, 35(2), 778–786.

    Article  Google Scholar 

  31. Dong, Q., & Dargie, W. (2013). Performance analysis of a handover mechanism for mobile wireless sensor network. In Consumer communications and networking conference (CCNC) (pp. 645–648). IEEE.

  32. Dargie, W., & Wen, J. (2014). A seamless handover for WSN using LMS filter. In 39th annual IEEE conference on local computer networks, LNCS 2014, 8–11 September, Edmonton, Canada (pp. 442–445).

  33. Polastre, J., Hill, J., & Culler, D. (2014) Versatile low power media access for wireless sensor networks. In SenSys’04, November 3–5, Baltimore, Maryland, USA.

  34. Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In Proceedings of the second international conference on embedded networked sensor systems (SenSys 2004) (pp. 95–107).

  35. Panta, R. K., Pelletier, J. A., & Vesonder, G. (2012). Efficient asynchronous low power listening for wireless sensor networks. In 31 international symposium on reliable distributed systems (pp. 291–300).

  36. Hsu, T.-H., Kim, T.-H., Chen, C.-C., & Wu, J.-S. (2012). A dynamic traffic-aware duty cycle adjustment MAC protocol for energy conserving in wireless sensor networks. International Journal of Distributed Sensor Networks. doi:10.1155/2012/790131.

    Google Scholar 

  37. Yang, O., & Heizelman, W. B. (2010) Modeling and throughput analysis for X-MAC with a finite queue capacity. In IEEE Globecom 2010. IEEE Communications Society.

  38. Buettner, M., Yee, G. V., Anderson, E., & Han, R. (2006). X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In Proceedings of the 4th international conference on embedded networked sensor systems (pp. 307–320).

  39. Mihai, G., Alina, D. A., & Ion, B. (2010). Performance analysis on T-MAC protocol over a body area network. In 2010 3rd international symposium on electrical and electronics engineering (ISEEE), 16–18 September (pp. 224–227).

  40. Zaeei, M., Taghizadeh, A., & Budiarto, R. (2011). EMS-MAC: Energy efficient contention-based medium access control protocol for mobile sensor networks. The Computer Journal, 54(12), 1963–1972.

    Article  Google Scholar 

  41. Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.

    Article  Google Scholar 

  42. OMNET++ discrete event simulation systems. http://www.omnetpp.org/. Accessed 10 March 2015.

  43. The Castalia simulator for wireless sensor networks. http://castalia.npc.nicta.com.au. Accessed 10 March 2015.

  44. Visualization and animation tool for Castalia Simulator. https://www.youtube.com/watch?v=CJqTdNMeUno. Accessed 1 April 2015.

  45. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouabdellah Kechar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kechar, B., Hamamine, H. Reliable Data Collection with Mobile Sink Using Seamless Handover in Duty Cycled Based WSNs. Wireless Pers Commun 98, 55–80 (2018). https://doi.org/10.1007/s11277-017-4855-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4855-2

Keywords

Navigation