Skip to main content

Advertisement

Log in

Joint Power and Time Allocation Scheme with QoS Constraints in Overlay Multi-user Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper studies the case of an overlay cognitive radio network where the primary user leases spectral resources to the secondary user in exchange for cooperation, considering that both type of users have specific quality of service requirements. We investigate the problem of joint power and time allocation for the secondary access during the cooperative phase, with a view to optimizing the effective capacity of the primary user given an average energy constraint for the secondary user. Afterwards, the optimal power allocation of the secondary user for its own transmission phase is investigated in order to maximize the effective capacity of the secondary link. The proposed joint power and time allocation mechanism is compared with an optimal time/constant power allocation scheme and a less sophisticated baseline allocation scheme, i.e. power allocation under constant time and its superiority is proven for various network parameters. The reference model of one primary–one secondary user is extended to a general multi user cognitive radio network through the proposed pairing mechanism based on matching theory. Particularly, considering the remarks of the reference scenario, we propose two different matching schemes (with/without consideration of primary users’ quality of service requirements) and we confirm their superiority compared to other matching mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Buddhikot, M. (2007). Understanding dynamic spectrum access: Models, taxonomy and challenges. In 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN) (pp. 649–663).

  2. Mitola, J., & Maguire, J. G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  3. Haykin, S., & Setoodeh, P. (2015). Cognitive radio networks: The spectrum supply chain paradigm. IEEE Transactions on Cognitive Communications and Networking, 1(1), 3–28.

    Article  Google Scholar 

  4. Akyildiz, I., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.

    Article  Google Scholar 

  5. Singh, J. S. P., Rai, M. K., Singh, J., & Kang, A. S. (2014). Trade-off between and and or detection method for cooperative sensing in cognitive radio. In IEEE international advance computing conference (IACC) (pp. 395–399).

  6. Simeone, O., Stanojev, I., Savazzi, S., Bar-Ness, Y., Spagnolini, U., & Pickholtz, R. (2008). Spectrum leasing to cooperating secondary ad hoc networks. IEEE Journal on Selected Areas in Communications, 26(1), 203–213.

    Article  Google Scholar 

  7. Laneman, J., Tse, D., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  8. Cui, C., Man, H., Wang, Y., & Liu, S. (2016). Optimal cooperative spectrum aware opportunistic routing in cognitive radio ad hoc networks. Wireless Personal Communications, 91(1), 101–118.

    Article  Google Scholar 

  9. Goldsmith, A., Jafar, S., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  10. Wu, D., & Negi, R. (2003). Effective capacity: A wireless link model for support of quality of service. IEEE Transactions on Wireless Communications, 2(4), 630–643.

    Google Scholar 

  11. Tang, J., & Zhang, X. (2007). Quality-of-service driven power and rate adaptation over wireless links. IEEE Transactions on Wireless Communications, 6(8), 3058–3068.

    Article  Google Scholar 

  12. Roth, A. E., & Sotomayor, M. A. O. (1992). Two-sided matching: A study in game-theoretic modeling and analysis. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  13. Gale, D., & Shapley, L. S. (1962). College admissions and the stability of marriage. American Mathematical Monthly, 69(1), 9–15.

    Article  MathSciNet  MATH  Google Scholar 

  14. Musavian, L., & Aissa, S. (2010). Effective capacity of delay-constrained cognitive radio in Nakagami fading channels. IEEE Transactions on Wireless Communications, 9(3), 1054–1062.

    Article  Google Scholar 

  15. Vassaki, S., Poulakis, M. I., Panagopoulos, A. D., & Constantinou, P. (2011). Optimal power allocation under qos constraints in cognitive radio systems. In 8th International symposium on wireless communication systems (ISWCS) (pp. 552–556).

  16. Vassaki, S., Poulakis, M. I., Panagopoulos, A. D., & Constantinou, P. (2014). Qos-driven power allocation under peak and average interference constraints in cognitive radio networks. Wireless Personal Communications, 78(1), 449–474.

    Article  Google Scholar 

  17. Xu, D., & Li, Q. (2015). Effective capacity region and power allocation for two-way spectrum sharing cognitive radio networks. Science China Information Sciences, 58(6), 1–10.

    Article  Google Scholar 

  18. Xu, D., & Li, Q. (2015). On the effective capacity region for cognitive radio multiple access channels. AEU-International Journal of Electronics and Communications, 69(6), 958–961.

    Article  Google Scholar 

  19. Hammouda, M., Akin, S., & Peissig, J. (2014). Effective capacity in cognitive radio broadcast channels. In IEEE global communications conference (GLOBECOM) (pp. 1071–1077).

  20. Wang, Y., & Liu, K. (2015). Statistical delay qos protection for primary users in cooperative cognitive radio networks. IEEE Communications Letters, 19(5), 835–838.

    Article  Google Scholar 

  21. Roumeliotis, A. J., Vassaki, S., & Panagopoulos, A. D. (2016). Time allocation mechanism with qos constraints in a spectrum leasing environment. In IEEE International conference on telecommunications (ICT) (pp. 43–47).

  22. Elalem, M. (2016). Effective capacity analysis for cognitive networks under qos satisfaction. Journal of Information Sciences and Computing Technologies, 5(3), 498–518.

    Google Scholar 

  23. Gu, Y., Saad, W., Bennis, M., Debbah, M., & Han, Z. (2015). Matching theory for future wireless networks: Fundamentals and applications. IEEE Communications Magazine, 53(5), 52–59.

    Article  Google Scholar 

  24. Bayat, S., Louie, R. H., Vucetic, B., & Li, Y. (2013). Dynamic decentralised algorithms for cognitive radio relay networks with multiple primary and secondary users utilising matching theory. Transactions on Emerging Telecommunications Technologies, 24(5), 486–502.

    Article  Google Scholar 

  25. Roumeliotis, A. J., Vassaki, S., & Panagopoulos, A. D. (2015). Overlay cognitive radio networks: A distributed matching scheme for user pairing. In IEEE international wireless communications and mobile computing conference (IWCMC) (pp. 172–177).

  26. Jovicic, A., & Viswanath, P. (2009). Cognitive radio: An information-theoretic perspective. IEEE Transactions on Information Theory, 55(9), 3945–3958.

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, Y., Yu, G., Zhang, Z., Chen, H. H., & Qiu, P. (2008). On cognitive radio networks with opportunistic power control strategies in fading channels. IEEE Transactions on Wireless Communications, 7(7), 2752–2761.

    Article  Google Scholar 

  28. Hong, Y. W. P., Huang, W. J., & Kuo, C. C. J. (2010). Cooperative communications and networking: Technologies and system design. Berlin: Springer.

    Book  MATH  Google Scholar 

  29. Zeidler, E. (2004). Oxford users’ guide to mathematics. Oxford: Oxford University Press.

    MATH  Google Scholar 

  30. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  31. Iwama, K., & Miyazaki, S. (2008). A survey of the stable marriage problem and its variants. In IEEE international conference on informatics education and research for knowledge-circulating society (ICKS) (pp. 131–136).

  32. Hong, X., Wang, J., Wang, C.-X., & Shi, J. (2014). Cognitive radio in 5g: A perspective on energy-spectral efficiency trade-off. IEEE Communications Magazine, 52(7), 46–53.

    Article  Google Scholar 

  33. Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5g wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.

    Article  Google Scholar 

  34. Tseng, F. H., Chou, L. D., Chao, H. C., & Wang, J. (2015). Ultra-dense small cell planning using cognitive radio network toward 5g. IEEE Wireless Communications, 22(6), 76–83.

    Article  Google Scholar 

  35. Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5g cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52(5), 86–92.

    Article  Google Scholar 

  36. ElSawy, H., Dahrouj, H., Al-Naffouri, T. Y., & Alouini, M. S. (2015). Virtualized cognitive network architecture for 5g cellular networks. IEEE Communications Magazine, 53(7), 78–85.

    Article  Google Scholar 

  37. Mumtaz, S., Huq, K. M. S., Ashraf, M. I., Rodriguez, J., Monteiro, V., & Politis, C. (2015). Cognitive vehicular communication for 5g. IEEE Communications Magazine, 53(7), 109–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios D. Panagopoulos.

Appendix: Matching Algorithm for Multi-user CRNs

Appendix: Matching Algorithm for Multi-user CRNs

figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roumeliotis, A.J., Vassaki, S. & Panagopoulos, A.D. Joint Power and Time Allocation Scheme with QoS Constraints in Overlay Multi-user Cognitive Radio Networks. Wireless Pers Commun 98, 337–362 (2018). https://doi.org/10.1007/s11277-017-4872-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4872-1

Keywords

Navigation