Skip to main content
Log in

Designing a MAC Algorithm for Equitable Spectrum Allocation in Cognitive Radio Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Spectrum sharing is one of the most important stages in cognitive radio wireless networks, responsible for the opportunistic allocation of free channels to unlicensed users (SUs) to be utilized in data transmission. One of the critical issues at this stage, is related to the absence of a module capable of allocating the available resources fairly to all network users. In this sense, the paper develops a media access control protocol (MAC) for cognitive networks based on infrastructure called CRUD-MAC, which allows to take advantage of channel access in a more equitable and efficient way; for this purpose two algorithms we designed within the MAC standard (using ANFIS and FAHP) for the ranking or classification of SUs by score when assigned channels based on network usage historical metrics, so that nodes with better ranking have priority in the allocation. Validation of the proposals was made by comparing the performance of CRUD-MAC with ANFIS, FAHP, and a channel assignment algorithm, not including ranking. The results show that the system is more efficient from the standpoint of fair allocation of resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.

    Article  Google Scholar 

  2. Mitola, I. I. I. J. (2001). Cognitive radio for flexible mobile multimedia communications. Mobile Networks and Applications, 6(5), 435–441.

    Article  MATH  Google Scholar 

  3. Mitola, J., & Maguire, G. Q. (1991). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  4. Márquez, H. (2016). Modelo de asignación multicanal con criterio de equidad en redes de radio cognitiva. Master’s thesis, Faculty of Engineering, Distrital University, Bogotá, Colombia.

  5. López, D., Rivas, E., & Gualdron, E. (2014). Proposed methodology for assignment of spectral bands in wireless cognitive radio networks. Journal Tecnura, 8(special edition doctorate), 61–69.

    Google Scholar 

  6. Lee, W. (2009). Spectrum management in cognitive radio wireless network. Ph.D. Thesis, School of Electrical and Computer Electrical, Georgia Institute of Technology, Georgia, USA.

  7. Guillen, J. (2012). Algoritmo para acceso al medio en redes inalámbricas cognitivas. Master’s thesis, Autónoma Metropolitana University, City of México, México.

  8. Chakraborty, J., Varma, J. V. K. C., & Erman, M. (2014). ANFIS based opportunistic power control for cognitive radio in spectrum sharing. In International conference on electrical information and communication technology (EICT) (pp. 1–6).

  9. Miltra, D., & Mahapatra, R. D. (2013). FIS based cognitive radio scheduling. In IEEE international conference on fuzzy systems (FUZZ) (pp. 1–7).

  10. Zhao, Y., Song, M., & Xin, C. (2013). FMAC: A fair MAC protocol for coexisting cognitive radio. In Proceedings IEEE INFOCOM (pp. 1474–1482).

  11. Armi, N., Saad, N. M., Yussof, M. Z., & Arshad, M. (2010). MAC protocol for opportunistic spectrum access in cognitive radio networks. In IEEE symposium on industrial electronics and applications (ISIEA), Penang, Malaysia.

  12. Le, L., & Ekram, H. (2007). QoS-Aware spectrum sharing in cognitive wireless networks. In IEEE global telecommunications conference (GLOBECOM’07) (pp. 3563–3567).

  13. Le, Y., Ma, L., Cheng, W., Cheng, X., & Chen, B. (2013). A time fairness-based MAC algorithm for throughput maximization in 802.11 networks. IEEE Transactions on Computers, 64(1), 19–31.

    Article  MathSciNet  Google Scholar 

  14. Tan, X., Yin, C., & Ma, L. (2014). Positional proportional fairness scheduling based on spectrum aggregation in cognitive radio. In International conference on telecommunications (ICT) (pp. 176–180).

  15. Huang, P., Wang, C., & Xiao, L. (2015). RC-MAC: A receiver-centric MAC protocol for event-driven wireless sensor networks. IEEE Transactions on Computers, 64(4), 1149–1161.

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, L., Iellamo, S., Coupechoux, M., & Godlewski, P. (2011). Spectrum auction with interference constraint for cognitive radio networks with multiple primary and secondary users. Journal Wireless Networks, 17(5), 1355–1371.

    Article  Google Scholar 

  17. Wang, L.-C., Wang, C.-W., & Adachi, F. (2011). Load-balancing spectrum decision for cognitive radio networks. IEEE Journal on Selected Areas in Communications, 29(11), 757–769.

    Article  Google Scholar 

  18. Liu, Y., & Knightly, E. (2003). Opportunistic fair scheduling over multiple wireless channels. In Twenty-second annual joint conference of the IEEE computer and communications (pp. 1106–1115).

  19. Yang, Z., Yao Y.-D., Chen, S., He, H., & Zheng, D. (2010). MAC protocol classification in a cognitive radio network. In 19th Annual wireless and optical communications conference (pp. 1–5).

  20. Wang, V. (2015). Handbook of research on learning outcomes and opportunities in the digital age (pp. 510–537). Hershey: IGI Global.

    Google Scholar 

  21. Wyglinski, A., Nekovee, M., & Hou, T. (2010). Cognitive radio communications and network: Principles and practice (pp. 201–231). Amsterdam: Elsevier.

    Google Scholar 

  22. Li, S., Ekici, E., & Shroff, N. (2015). Throughput-optimal queue length based CSMA/CA algorithm for cognitive radio networks. IEEE Transaction on Mobile Computing, 14(5), 1098–1108.

    Article  Google Scholar 

  23. Su, H., & Zhang, Z. (2008). Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio networks. IEEE Journal on Selected Areas in Communications, 26(1), 118–129.

    Article  Google Scholar 

  24. Atayero, A., & Sheluhin, O. (2013). Integrated models for information communication systems and networks: Design and development (pp. 343–358). Hershey: IGI Global.

    Book  Google Scholar 

  25. He, A., Bae, K., Newman, T., Gaeddert, J., Kim, K., Menon, R., et al. (2010). A survey artificial intelligence for cognitive radios. IEEE Transactions on Vehicular Technology, 59(4), 1578–1592.

    Article  Google Scholar 

  26. Roger, J.-S. (1993). ANFIS: Adaptative-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665–685.

    Article  Google Scholar 

  27. Adeli, H., & Siddique, N. (2013). Computational intelligence: Synergies of fuzzy logic, neural networks and evolutionary computing (pp. 357–409). London: Wiley.

    Google Scholar 

  28. Keller, J., & Fogel, D. (2016). Fundamentals of computational intelligence: Neural networks, fuzzy systems, and evolutionary computation (pp. 77–191). London: Wiley.

    Google Scholar 

  29. Samui, P. (2016). Handbook of research on advanced computational techniques for simulation-based engineering (pp. 171–194). Hershey: IGI Global.

    Book  Google Scholar 

  30. Jang, J.-S., Sun, C.-T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence (pp. 173–194). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  31. Mehbodniya, A., Kaleem, F., Yen, K., & Adachi, F. (2012). A fuzzy MADM ranking approach for vertical mobility in next generation hybrid networks. In 4th International congress on ultra modern telecommunications and control systems and workshops (ICUMT) (pp. 262–267).

  32. Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655.

    Article  MathSciNet  MATH  Google Scholar 

  33. Büyüközkan, G., Kahraman, C., & Ruan, D. (2004). A fuzzy multicriteria decision approach for software development strategy selection. International Journal of General Systems, 33(2–3), 259–280.

    Article  MATH  Google Scholar 

  34. Miranda, E. (2001). Improve subjective estimates using paired comparison. Journal IEEE Software, 18(1), 87–91.

    Article  Google Scholar 

  35. López, D., Ordoñez, J., & Rivas, E. (2016). User characterization through dynamic Bayesian networks in cognitive radio wireless networks. International Journal of Engineering and Technology, 8(4), 1771–1783.

    Article  Google Scholar 

  36. Palangi, H., Deng, L., Sheng, Y., Gao, J., He, X., Chen, J., et al. (2016). Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(4), 694–707.

    Article  Google Scholar 

  37. Rahnema, M. (1993). Overview of the GSM system and protocol architecture. IEEE Communications Magazine, 31(4), 92–100.

    Article  Google Scholar 

  38. Ning, G., Cao, X., Duan, J., & Chowdhury, K. (2011). A spectrum sharing algorithm based on spectrum heterogeneity for centralized cognitive radio networks. In 73rd Vehicular technology conference (VTC Spring) (pp. 1–5).

  39. Gavrilovska, L., Denkovski, D., Rakovic, V., & Angjelichinoski, M. (2014). Medium access control protocol in cognitive radio networks: Overview and general classification. IEEE Communications Survey and Tutorials, 16(4), 2092–2124.

    Article  Google Scholar 

  40. Nobar, S., Mehr, K., & Niya, J. (2015). Comprehensive performance analysis of IEEE 802.15.17 CSMA mechanism for saturated traffic. Journal of Optical Communications and Networking, 7(2), 62–73.

    Article  Google Scholar 

  41. Hernández, J., Rodríguez, E., Marcelín, R., & Pascoe, M. (2012). CRUAM-MAC: A novel cognitive radio MAC protocol for dynamic spectrum Access. In IEEE Latin-America conference on communications (LATINCOM) (pp. 1–6).

  42. Mathworks, Matlab. (2014). Fuzzy logic toolbox. http://www.mathworks.com/.

  43. Jain, R., Chiu, D.-M., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation and shared computer system. (September). http://www.cs.wustl.edu/~jain/papers/ftp/fairness.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Alfonso López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, D.A., Rojas, C.A., Zapata, D.F. et al. Designing a MAC Algorithm for Equitable Spectrum Allocation in Cognitive Radio Wireless Networks. Wireless Pers Commun 98, 363–394 (2018). https://doi.org/10.1007/s11277-017-4873-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4873-0

Keywords

Navigation