Skip to main content
Log in

A Survey on Planar Antenna Designs for Cognitive Radio Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In recent years, the demand for spectrum continues to increase with the advent of various wireless communication applications. However, it is a limited resource and cannot be made available beyond a certain extent. Many of the times, licensed spectrum is free due to its inefficient utilization. So, it can be utilized for other applications to mitigate the problem of limited spectrum availability to some extent. Among the many ways of performing this task, one approach is to use the frequencies in statically licensed spectrum through continuous sensing, which is popularly known as cognitive radio technology. In this model, UWB antennas are employed to monitor the radio environment and narrow band (NB) antennas are adopted for communication. This paper discusses various kinds of planar monopole antennas for cognitive radio applications. They are divided into three categories on the basis of different antennas used in cognitive radio environment. In the first category two separate antennas, which include one UWB antenna and one frequency reconfigurable NB antenna are employed for spectrum sensing and communication, respectively. In the second category, a single port frequency reconfigurable UWB/NB antenna is used. However, it requires an appropriate switching mechanism to switch between the UWB and NB modes. The third category includes dual-port integrated antennas systems, in which one UWB antenna and one frequency reconfigurable NB antenna are integrated on a single substrate. Finally, this paper discuss an opinion of designing multi-port integrated UWB and NB antennas systems to overcome the drawbacks of reconfigurable antennas and to further enhance the spectrum utilization efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Raslan, A. R. (2013). Metamaterial antennas for cognitive radio applications. A Thesis Submitted to the Electronics Engineering Department, American University in Cairo School of Sciences and Engineering.

  2. Al-Husseini, M., Kabalan, K., El-Hajj, A., & Christodoulou, C. (2010). Cognitive radio: UWB integration and related antenna design. In M. J. Er (Ed.), New trends in technologies: control, management, computational intelligence and network systems. Rijeka, Croatia: INTECH.

    Google Scholar 

  3. Tawk, Y., Bkassiny, M., El-Howayek, G., Jayaweera, S. K., Avery, K., & Christodoulou, C. G. (2011). Reconfigurable front-end antennas for cognitive radio applications. IET Microwaves, Antennas and Propagation, 5(8), 985–992.

    Article  Google Scholar 

  4. Jayaweera, S., & Mosquera, C. (2009). A dynamic spectrum leasing (DSL) framework for spectrum sharing in cognitive radio networks. In Proceedings of the IEEE forty-third asilomar conference on signals, systems and computers (pp. 1819–1823). Pacific Grove, California.

  5. Murtaza, N., Sharma, R. K., ThomÄa, R. S., & Hein, M. A. (2013). Directional antennas for cognitive radio: Analysis and design recommendations. Progress in Electromagnetics Research, 140, 1–30.

    Article  Google Scholar 

  6. Safatly, L., Bkassiny, M., Al-Husseini, M., & El-Hajj, A. (2014). Cognitive radio transceivers: RF, spectrum sensing, and learning algorithms review. International Journal of Antennas and Propagation, 2014, p. 21, Article ID: 548473.

  7. FCC 1st Report and Order on Ultra-Wideband Technology, (2002).

  8. List of UWB Channels in various countries. Available from: http://cdn.arstechnica.net/Gadgets/uwb_tzero_chart.png.

  9. Schantz, H. G. (2012). Three centuries of UWB antenna development. In Proceedings of the IEEE international conference on ultra-wideband (ICUWB’12) (pp. 506–512). Syracuse, NY, USA.

  10. Lakrit, S., & Ammor, H. (2015). Design of ultra wideband small circular patch antenna for wireless communication. ARPN Journal of Engineering and Applied Sciences, 10(4), 1762–1765.

    Google Scholar 

  11. Al-Husseini, M., El-Hajj, A., Kabalan, K. Y. (2008). A 1.9–13.5 low-cost microstrip antenna. In Proceedings of the IEEE international conference on wireless communications and mobile computing conference (IWCMC’08) (pp. 1023–1025). Crete, Greece.

  12. Kumar, R., & Gaikwad, S. (2013). On the design of nano-arm fractal antenna for uwb wireless applications. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 12(1), 158–171.

    Article  Google Scholar 

  13. Al-Husseini, M., Tawk, Y., El-Hajj, A., Kabalan, K. Y. (2009). A low-cost microstrip antenna for 3G/WLAN/WiMAX and UWB applications. In Proceedings of the IEEE international conference on advances in computational tools for engineering applications (ACTEA’09) (pp. 68–70). Zouk Mosbeh, Lebanon.

  14. Waghmare, C., & Kothari, A. (2014). Spanner shaped ultra wideband patch antenna. In Proceedings of the IEEE students conference on engineering and systems (SCES) (pp. 1–4). Allahabad.

  15. El Hamdouni, A., Zbitou, J., Tajmouati, A., El Abdellaoui, L., Errkik, A., Tribak, A., et al. (2015). Design of a novel CPW fed fractal antenna for UWB. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 9(1), 100–103.

    Google Scholar 

  16. Al-husseini, M., Ramadan, A., Tawk, Y., El-Hajj, A., & Kabalan, K. Y. (2011). Design and ground plane optimization of a CPW-fed ultra-wideband antenna. Turkish Journal of Electrical Engineering and Computer Sciences, 19(2), 243–250.

    Google Scholar 

  17. Sharma, S. K., Gupta, A., & Chaudhary, R. K. (2015). UWB ring-shaped metamaterial antenna with modified phi-shaped SRR. In Proceedings of the IEEE international symposium on antennas and propagation & USNC/URSI national radio science meeting (pp. 1966–1967). British Columbia, Canada.

  18. Zahran, S. R., Ahmed, O. H. E. S., El-Shalakany, A. T., Saleh, S. & Abdalla, M. A. (2014). Ultra wide band antenna with enhancement efficiency for high speed communications. In Proceedings of the IEEE 31st national radio science conference (NRSC) (pp. 65–72). Cairo, Egypt.

  19. Bougoutaia, T., Khedrouche, D., & Hocini, A. (2015). Bandwidth improvement for compact microstrip patch antenna using metamaterials. In Proceedings of the 5th international science congress and exhibition APMAS, Vol. 129(4) (pp. 538–540). Lykia, Oludeniz.

  20. Dandime, G. M., & Kasabegoudar, V. G. (2014). A slotted circular monopole antenna for wireless applications. International Journal of Wireless Communications and Mobile Computing, 2(2), 30–34.

    Article  Google Scholar 

  21. Anvesh Kumar, N., & Gandhi, A. S. (2016). Small size planar monopole antenna for high speed UWB applications. In Proceedings of the twenty second national conference on communications (NCC) (pp. 1–5). Guwahati, Assam, India.

  22. Tripathi, S., Mohan, A., & Yadav, S. (2014). Hexagonal fractal ultra-wideband antenna using Koch geometry with bandwidth enhancement. IET Microwaves, Antennas and Propagation, 8(15), 1445–1450.

    Article  Google Scholar 

  23. Pandey, G. K., Singh, H. S., Bharti, P. K., & Meshram, M. K. (2014). Metamaterial-based UWB antenna. Electronics Letters, 50(18), 1266–1268.

    Article  Google Scholar 

  24. Pourahmadazar, J., Ghobadi, C., & Nourinia, J. (2011). Novel modified pythagorean tree fractal monopole antennas for UWB applications. IEEE Antennas and Wireless Propagation Letters, 10, 484–487.

    Article  Google Scholar 

  25. Islam, M. M., Islam, M. T., Samsuzzaman, M., & Faruque, M. R. I. (2015). Compact metamaterial antenna for UWB applications. Electronics Letters, 51(16), 1222–1224.

    Article  Google Scholar 

  26. Guo, L., Wang, S., Chen, X., & Parini, C. G. (2010). Study of compact antenna for UWB applications. Electronics Letters, 46(2), 115–116.

    Article  Google Scholar 

  27. Tripathi, S., Yadav, S., Vijay, V., Dixit, A., & Mohan, A. (2013). Hexagonal shaped fractal UWB antenna. In Proceedings of the IEEE applied electromagnetics conference (AEMC) (pp. 1–2). Bhubaneswar, India.

  28. Tripathi, S., Yadav, S., Vijay, V., Dixit, A., & Mohan, A. (2013). A novel multi band notched octagonal shaped fractal UWB antenna. In Proceedings of the IEEE international conference on signal processing and communication (ICSC) (pp. 167–169). Noida, India.

  29. Roshna, T. K., Deepak, U., Sajitha, V. R., & Mohanan, P. (2014). Coplanar stripline-fed compact UWB antenna. Electronics Letters, 50(17), 1181–1182.

    Article  MATH  Google Scholar 

  30. Ray, K. P. (2008). Design aspects of printed monopole antennas for ultra-wide band applications. International Journal of Antennas and Propagation, 2008, p. 8, Article ID: 713858.

  31. Al-Husseini, M., Ramadan, A., El-Hajj, A., Kabalan, K. Y., Tawk, Y., & Christodoulou, C. G. (2011). Design based on complementary split-ring resonators of an antenna with controllable band notches for UWB cognitive radio applications. In Proceedings of the IEEE international symposium on antennas and Propagation (APSURSI) (pp. 1120–1122). Washington, U.S.A.

  32. Shi, R., Xu, X., Dong, J., & Luo, Q. (2014). Design and analysis of a novel dual band-notched UWB antenna. International Journal of Antennas and Propagation, 2014, p. 10, Article ID: 531959.

  33. Abdelhalim, C., & Farid, D. (2014). A compact planar UWB antenna with triple controllable band-notched characteristics. International Journal of Antennas and Propagation, 2014, p. 10, Article ID: 848062.

  34. Jangid, S., & Kumar, M. (2012). A novel UWB band notched rectangular patch antenna with square slot. In Proceedings of the IEEE fourth international conference on computational intelligence and communication networks (CICN) (pp. 5–9). Uttar Pradesh, India.

  35. Al-Husseini, M., Costantine, J., Christodoulou, C. G., Barbin, S. E., El-Hajj, A., & Kabalan, K. Y. (2010). A reconfigurable frequency-notched UWB antenna with split-ring resonators. In Proceedings of the IEEE Asia-Pacific microwave conference (pp. 618–621). Yokohama, Japan.

  36. Jalil, Y. E., Chakrabarty, C. K., & Kasi, B. (2013). A compact ultra wideband antenna with dual band-notched design. In Proceedings of the IEEE 7th international conference on signal processing and communication systems (ICSPCS) (pp. 1–5). Gold coast, Australia.

  37. Chu, Q.-X., & Yang, Y.-Y. (2008). A compact ultra wide band antenna with 3.4/5.5 GHz dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 56(12), 3637–3644.

    Article  MathSciNet  Google Scholar 

  38. Zheng, S. H., Liu, X., & Tentzeris, M. M. (2014). Optically controlled reconfigurable band-notched UWB antenna for cognitive radio systems. Electronics Letters, 50(21), 1502–1504.

    Article  Google Scholar 

  39. Kamma, A., Reddy, G. S., Parmar, R. S., & Mukherjee, J. (2014). Reconfigurable dual-band notch UWB antenna. In Proceedings of the twentieth national conference on communications (NCC) (pp. 1–3). Kanpur, India.

  40. Badamchi, B., Nourinia, J., Ghobadi, C., & Shahmirzadi, A. V. (2014). Design of compact reconfigurable ultra-wideband slot antenna with switchable single/dual band notch functions. IET Microwave, Antennas and Propagation, 8(8), 541–548.

    Article  Google Scholar 

  41. Syed, A., & Aldhaheri, R. W. (2016). A very compact and low profile UWB planar antenna with WLAN band rejection. International Journal of Antennas and Propagation, 2016, p. 7, Article ID: 3560938.

  42. Chen, Y., Ge, Y., & Bird, T. (2015). A novel UWB dielectric resonator antenna with dual notched bands. In Proceedings of the international symposium on antennas and propagation (ISAP) (pp. 1–4). Tasmania, Australia.

  43. Ryu, K. S., & Kishk, A. A. (2010). UWB dielectric resonator antenna with low cross-polarization. In Proceedings of the IEEE radio and wireless symposium (RWS) (pp. 551–554). New Orleans, LA.

  44. Abedian, M., Rahim, S. K. A., & Khalily, M. (2012). Two-segments compact dielectric resonator antenna for UWB application. IEEE Antennas and Wireless Propagation Letters, 11, 1533–1536.

    Article  Google Scholar 

  45. Kalteh, A. A., Dadash Zadeh, G. R., Naser-Moghadasi, M., & Virdee, B. S. (2012). Ultra-wideband circular slot antenna with reconfigurable notch band function. ET Microwaves, Antennas and Propagation, 6(1), 108–112.

    Article  Google Scholar 

  46. Ge, Y., Wei, T., & Hai, Z. (2012). Design of compact UWB dielectric resonator antennas. In Proceedings of the IEEE international symposium on antennas and propagation (pp. 1–2). Chicago, IL, USA.

  47. Messaoudene, I., Denidni, T. A., & Benghalia, A. (2014). Experimental investigations of an omni-directional dielectric resonator antenna for UWB aystems. In Proceedings of the 8th European conference on antennas and propagation (EuCAP 2014) (pp. 2925–2927), Hague, Netherlands.

  48. Abedian, M., Rahim, S. K. A., Danesh, Sh, Khalily, M., & Noghabaei, S. M. (2013). Ultra wide band Dielectric Resonator Antenna With WLAN Band Rejection at 5.8 GHz. IEEE Antennas and Wireless Propagation Letters, 12, 1523–1526.

    Article  Google Scholar 

  49. Ryu, K. S., & Kishk, A. A. (2011). UWB dielectric resonator antenna having consistent omnidirectional pattern and low cross-polarization characteristics. IEEE Transactions on Antennas and Propagation, 59(4), 1403–1408.

    Article  Google Scholar 

  50. Abedian, M., Rahim, S. K. A., Danesh, Sh, Hakimi, S., Cheong, L. Y., & Jamaluddin, M. H. (2015). Novel design of compact UWB dielectric resonator antenna with dual-band-rejection characteristics for WiMAX/WLAN bands. IEEE Antennas and Wireless Propagation Letters, 14, 245–248.

    Article  Google Scholar 

  51. Abedian, M., Rahim, S. K. A., Danesh, S., & Rahman, T. A. (2015). Compact UWB dielectric resonator antenna with WLAN band rejection. In Proceedings of the international symposium on antennas and propagation (ISAP) (pp. 1–4). Tasmania, Australia.

  52. Abedian, M., Rahim, S. K. A., & Danesh, S. (2014). Design of a compact UWB rectangular dielectric resonator antenna using a simple structure. In Proceedings of the 8th European conference on antennas and propagation (EuCAP 2014) (pp. 2904–2907). Hague, Netherlands.

  53. Dongre, V. J., & Takle, M. C. (2014). Multiple band monopole arm microstrip spiral antenna for cognitive radio. Global Journal of Researches in Engineering: F Electrical and Electronics Engineering, 14(3), Version 1.0.

  54. Nayak, P. B., Verma, S., & Kumar, P. (2013). Multiband fractal antenna design for Cognitive Radio Applications. In Proceedings of the IEEE international conference on signal processing and communication (ICSC) (pp. 115–120). Noida, India.

  55. Christodoulou, C. G., Tawk, Y., Lane, S. A., & Erwin, S. R. (2012). Reconfigurable antennas for wireless and space applications. In Proceedings of the IEEE, 110(7), pp. 2250–2261.

  56. Qin, P.-Y., Weily, A. R., Guo, Y. J., Bird, T. S., & Liang, C.-H. (2010). Frequency reconfigurable quasi-Yagi folded dipole antenna. IEEE Transactions on Antennas and Propagation, 58(8), 2742–2747.

    Article  Google Scholar 

  57. Ajith Kumar, M. M., Patnaik, A., & Christodoulou, C. G. (2014). Design and Testing of a multifrequency antenna with a reconfigurable feed. IEEE Antennas and Wireless Propagation Letters, 13, 730–733.

    Article  Google Scholar 

  58. Kaur, P., De, A., & Aggarwal, S. K. (2014). Design of a Novel Reconfigurable Fractal Antenna for Multi-Band. International Journal of Advanced Science and Technology, 62, 103–112.

    Article  Google Scholar 

  59. Mansoul, A., Ghanem, F., Hamid, M. R., & Trabelsi, M. (2014). A selective frequency-reconfigurable antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 13, 515–518.

    Article  Google Scholar 

  60. Tawk, Y., Costantine, J., Barbin, S. E., & Christodoulou, C. G., Integrating laser diodes in a reconfigurable antenna system. In Proceedings of the international microwave and optoelectronics conference (IMOC) (pp. 794–796). Natal, Brazil.

  61. Tawk, Y., Costantine, J., & Christodoulou, C. G. (2010). A frequency reconfigurable rotatable microstrip antenna design. In Proceedings of the IEEE antennas and propagation society international symposium (APSURSI) (pp. 1–4). Toronto, ON, Canada.

  62. Majid, H. A., Rahim, M. K. A., Hamid, M. R., & Ismail, M. F. (2012). A compact frequency-reconfigurable narrowband microstrip slot antenna. IEEE Antennas and Wireless Propagation Letters, 11, 616–619.

    Article  Google Scholar 

  63. Kumar, R., & Vijay, R. (2016). A frequency agile semicircular slot antenna for cognitive radio system. International Journal of Antennas and Propagation, 2016, p. 11, Article ID: 2648248.

  64. Tawk, Y., & Christodoulou, C. G. (2009). A cellular automata reconfigurable microstrip antenna design. In Proceedings of the IEEE antennas and propagation society international symposium (pp. 1–4). North Charleston, SC, USA.

  65. Xuelin, L., Xiaolin Y., & Fangling K. (2015). A frequency-reconfigurable monopole antenna with switchable stubbed ground structure. Radio Engineering, 24(2), 449–454.

    Google Scholar 

  66. Jung, H. W., & De Flaviis, F. (2005). Reconfigurable multi-beam spiral antenna with RF-MEMS capacitive series switches fabricated on rigid substrates”, In Proceedings of the IEEE antennas and propagation society international symposium (pp. 421–424). Washington, DC.

  67. Safarpour, M., Rezaei, P., & Zarkhoshk, A. (2015). Compact multi-band reconfigurable antenna for cognitive radio. In Proceedings of the IEEE international symposium on antennas and propagation & USNC/URSI national radio science meeting (pp. 2397–2398). British Columbia, Canada.

  68. Al-Husseini, M., Ramadan, A., Zamudio, M. E., Christodoulou, C. G., El-Hajj, A., & Kabalan, K. Y. (2011). A UWB antenna combined with a reconfigurable band pass filter for cognitive radio applications. In Proceedings of the IEEE topical conference on antennas and propagation in wireless communications (APWC) (pp. 902–904). Torino, Italy.

  69. AbuTarboush, H. F., Khan, S., Nilavalan, R., Al-Raweshidy, H. S., & Budimir, D. (2009). Reconfigurable wideband patch antenna for cognitive radio. In Proceedings of the IEEE loughborough antennas & propagation conference (LAPC) (pp. 141–144). UK.

  70. Aly, M. G., Wang, Y. (2013). An integrated narrowband-wideband antenna. In Proceedings of the IEEE loughborough antennas & propagation conference (LAPC) (pp. 433–435). UK.

  71. Al-Husseini, M., Ramadan, A., El-Hajj, A., & Kabalan, K. Y. (2012). A reconfigurable antenna based on an ultra wide band to narrowband transformation. In PIERS proceedings (pp. 550–553). Moscow, Russia.

  72. Aboufoul, T., Alomainy, A., & Parini, C. (2012). Reconfiguring UWB monopole antenna for cognitive radio applications using GaAs FET switches. IEEE Antennas and Wireless Propagation Letters, 11, 392–394.

    Article  Google Scholar 

  73. Kumar, N., Ananda Raju, P., & Behera, S. K. (2015). Frequency reconfigurable microstrip antenna for cognitive radio applications. In Proceedings of the international conference on communications and signal processing (ICCSP) (pp. 370–373). Melmaruvathur, India.

  74. Jin, G. P., Zhang, D. L., & Li, R. L. (2011). Optically controlled reconfigurable antenna for cognitive radio applications. Electronics Letters, 47(17), 948–950.

    Article  Google Scholar 

  75. Rodrigues, E. J. B., Lins, H. W. C., & Assuncao, A. G. D. (2014). Reconfigurable circular ring patch antenna for uwb and cognitive radio applications. In Proceedings of the 8th European conference on antennas and propagation (EuCAP 2014) (pp. 2744–2748). Hague, Netherlands.

  76. Boudaghi, H., Azarmanesh, M., & Mehranpour, M. (2012). A frequency-reconfigurable monopole antenna using switchable slotted ground structure. IEEE Antennas and Wireless Propagation Letters, 11, 655–658.

    Article  Google Scholar 

  77. Gupta, C., Maheshwari, D., Saraswat, R. K., & Kumar, M. (2014). A UWB frequency-band reconfigurable antenna using switchable slotted ground structure. In Proceedings of the fourth international conference on communication systems and network technologies (CSNT) (pp. 20–24). Bhopal, India.

  78. Bitchikh, M., & Ghanem, F. (2014). A three-resolution UWB frequency reconfigurable antipodal vivaldi antenna for cognitive radios. In Proceedings of the 8th European conference on antennas and propagation (EuCAP 2014) (pp. 3665–3668). Hague, Netherlands.

  79. Nachouane, H., Najid, A., Tribak, A., & Riouch, F. (2016). Dual port antenna combining sensing and communication tasks for cognitive radio. International Journal of Electronics and Telecommunications, 62(2), 121–127.

    Article  Google Scholar 

  80. Ghanem, F., Hall, P. S., & Kelly, J. R. (2009). Two port frequency reconfigurable antenna for cognitive radios. Electronics Letters, 45(11), 534–536.

    Article  Google Scholar 

  81. Muduli, A., & Mishra, R. K. (2015). Modified UWB microstrip monopole antenna for cognitive radio application. In Proceedings of the IEEE applied electromagnetics conference (AEMC) (pp. 1–2), Guwahati, Assam.

  82. Wang, Y., Denidni, T. A., Zeng, Q., & Wei, G. (2014). A design of integrated ultra-wideband/narrow band rectangular dielectric resonator antenna. In Proceedings of the IEEE international wireless symposium (IWS) (pp. 1–4). Xi’an, China.

  83. Tummas, P., Krachodnok, P., & Wongsan, R. (2014). A frequency reconfigurable antenna design for UWB applications. In Proceedings of the 11th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON) (pp. 1–4). Nakhon Ratchasima, Thailand.

  84. Augustin, G., & Denidni, T. A. (2012). An integrated ultra wideband/narrow band antenna in uniplanar configuration for cognitive radio systems. IEEE Transactions on Antennas and Propagation, 60(11), 5479–5484.

    Article  Google Scholar 

  85. Tawk, Y., Costantine, J., & Christodoulou, C. G. (2011). A rotatable reconfigurable antenna for cognitive radio applications. In Proceedings of the IEEE radio and wireless symposium (RWS) (pp. 158–161). Phoenix, Arizona, USA.

  86. Augustin, G., Chacko, B. P., & Denidni, T. A. (2014). Diversity antenna with electronically switchable wide/narrow band for cognitive radio systems. In Proceedings of the 8th European conference on antennas and propagation (EuCAP 2014) (pp. 3243–3245). Hague, Netherlands.

  87. Ebrahimi, E., Kelly J. R., & Hall, P. S. (2011). Integrated wide-narrowband antenna for multi-standard radio. IEEE Transactions on Antennas and Propagation, 59(7), 2628–2635.

    Article  Google Scholar 

  88. Sahnoun, N., Messaoudene, I., Denidni, T. A., & Benghalia, A. (2015). Integrated flexible UWB/NB antenna conformed on a cylindrical surface. Progress in Electromagnetics Research Letters, 55, 121–128.

    Article  Google Scholar 

  89. Tawk, Y., & Christodoulou, C. G. (2009). A new reconfigurable antenna design for cognitive radio. IEEE Antennas and Wireless Propagation Letters, 8, 1378–1381.

    Article  Google Scholar 

  90. Al-Husseini, M., El-Hajj, A., Tawk, Y., Kabalan, K. Y., & Christodoulou, C. G. (2010). A simple dual-port antenna system for cognitive radio applications. In Proceedings of the IEEE international conference on high performance computing and simulation (HPCS) (pp. 549–552). Caen, France.

  91. Tawk, Y., Costantine, J., Hemmady, S., Balakrishnan, G., Avery, K., & Christodoulou, C. G. (2012). Demonstration of a cognitive radio front end using an optically pumped reconfigurable antenna system (OPRAS). IEEE Transactions on Antennas and Propagation, 60(2), 1075–1083.

    Article  Google Scholar 

  92. Messaoudenel, D., Denidnil, T. A., & Benghalia, A. (2013). Ultra-wideband CPW antenna integrated with narrow band dielectric resonator. In Proceedings of the IEEE international symposium on antennas and propagation (APSURSI) (pp. 1308–1309). Florida, USA.

  93. Zheng, S. -H., Liu, X. -Y., & Tentzeris, M. M. (2014). A novel optically controlled reconfigurable antenna for cognitive radio systems. In Proceedings of the IEEE antennas and propagation society international symposium (APSURSI) (pp. 1246–1247) Memphis, Tennessee, USA.

  94. Erfani, E., Nourinia, J., Ghobadi, C., Niroo-Jazi, M., & Denidni, T. A. (2012). Design and implementation of an integrated UWB/reconfigurable-slot antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 11, 77–80.

    Article  Google Scholar 

  95. Wang, Y., Wei, G., Zeng Q., & Zeng, Q. (2013). Integrated ultra-wideband/narrow band dielectric resonator antenna. In Proceedings of the IEEE international symposium on antennas and propagation (APSURSI) (pp. 1692–1693). Florida, USA.

  96. Wang, Y., Wei, G., Denidni, T. A., & Zeng, Q. (2013). Ultra-wideband planar monopole integrated with cylindrical dielectric resonator antenna. In Proceedings of the IEEE international symposium on antennas and propagation (APSURSI) (pp. 1696–1697). Florida, USA.

  97. Li, Y., Li, W., & Mittra, R. (2012). Integrated dual-purpose narrow/ultra-wide band antenna for cognitive radio applications. In Proceedings of the IEEE international symposium on antennas and propagation (pp. 1–2). Chicago, Illinois, U.S.A.

  98. Anvesh Kumar, N., & Gandhi, A. S. (2016). A compact novel three-port integrated wide and narrow band antennas system for cognitive radio applications. International Journal of Antennas and Propagation, 2016, p. 14, Article ID: 2829357.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anveshkumar Nella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nella, A., Gandhi, A.S. A Survey on Planar Antenna Designs for Cognitive Radio Applications. Wireless Pers Commun 98, 541–569 (2018). https://doi.org/10.1007/s11277-017-4883-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4883-y

Keywords

Navigation