Skip to main content
Log in

Statistical Approach for Performance Analysis of Multipath Scattering Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In realistic scenarios, multipath scattering environments usually require an approach which can easily model signal behavior. We have considered a Rayleigh multipath scattering channel. The multipath scattering environment captures degradation of signals in fading channels. In this paper, performance of the channel is investigated through the distribution of mutual information in the multipath scattering channel using matrix method. The probability density function for multipath scattering channels is still a developing area of research. The need of the hour is performance evaluation of these communication links in an efficient manner. By using techniques of probability theory, the variance of mutual information is derived for multiple cases based on fading environment. In this paper, we have considered a matrix based multipath scattering model for communication link. We have derived closed-form expression for mutual information in a multipath scattering channel. The matrix method is used to substitute this effect in terms of the Gaussian distribution. This substitution will prove to be very accurate for different cases as analyzed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stüber, G. L. (2012). Principles of mobile communications (3rd ed.). Berlin: Springer.

    Book  Google Scholar 

  2. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communications. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  3. Gesbert, D., Bolcskei, H., Gore, D. A., & Paulraj, A. J. (2002). Outdoor MIMO wireless channels: models and performance prediction. IEEE Transactions on Communications, 50(12), 1926–1934.

    Article  Google Scholar 

  4. Moustakas, A. L., Simon, S. H., & Sengupta, A. M. (2003). MIMO capacity through correlated channels in the presence of correlated interferers and noise: A (not so) large N analysis. IEEE Transactions on Information Theory, 49(10), 2545–2561.

    Article  MathSciNet  MATH  Google Scholar 

  5. Debbah, M., & Muller, R. R. (2005). MIMO channel modeling and the principle of maximum entropy. IEEE Transactions on Information Theory, 51(5), 1667–1690.

    Article  MathSciNet  MATH  Google Scholar 

  6. Wei, L., Zheng, Z., Corander, J., & Taricco, G. (2015). On the outage capacity of orthogonal space-time block codes over multi-cluster scattering MIMO channels. IEEE Transactions on Communications, 63(5), 1700–1711.

    Article  Google Scholar 

  7. Simon, S. H., Moustakas, A. L., & Marinelli, L. (2006). Capacity and character expansions: Moment-generating function and other exact results for MIMO correlated channels. IEEE Transactions on Information Theory, 52(12), 5336–5351.

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo, D., Shamai, S., & Verdu, S. (2005). Mutual information and minimum mean-square error in Gaussian channels. IEEE Transactions on Information Theory, 51(5), 1261–1282.

    Article  MathSciNet  MATH  Google Scholar 

  9. Palomar, D. P., & Verdu, S. (2006). Gradient of mutual information in linear vector Gaussian channels. IEEE Transactions on Information Theory, 52(1), 141–154.

    Article  MathSciNet  MATH  Google Scholar 

  10. Wei, L., Zheng, Z., Tirkkonen, O., & Hamalainen, J. (2013). On the ergodic mutual information of multiple cluster scattering MIMO channels. IEEE Communication Letters, 17(9), 1700–1703.

    Article  Google Scholar 

  11. Hoydis, J., Couillet, R., & Debbah, M. (2011). Asymptotic analysis of doublescattering channels. In 45th Asilomar conference on signals, systems and computers (ASILOMAR) (pp. 1935–1939).

  12. Kamath, M. A., & Hughes, B. L. (2005). The asymptotic capacity of multiple antenna Rayleigh fading channels. IEEE Transactions on Information Theory, 51(12), 4325–4333.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bai, Z. D. (1993). Convergence rate of expected spectral distributions of large random matrices. Part I. Wigner matrices. The Annals of Probability, 21(2), 625–648.

    Article  MathSciNet  MATH  Google Scholar 

  14. Mingo, J. A., & Speicher, R. (2006). Second order freeness and fluctuations of random matrices: I. Gaussian and Wishart matrices and cyclic Fock spaces. Journal of Functional Analysis, 235(1), 226–270.

    Article  MathSciNet  MATH  Google Scholar 

  15. Lozano, A., & Jindal, N. (2012). Are yesterday’s information-theoretic fading models and performance metrics adequate for the analysis of today’s wireless systems. IEEE Communication Magazine, 50(11), 210–217.

    Article  Google Scholar 

  16. Speicher, R. (2014) Free probability and random matrices. In Proceedings of international congress of mathematicians, Seoul, Korea, August 13–21, 2014.

  17. Vu, H. V., Tran, N. H., Nguyen, T. V., & Hariharan, S. I. (2014). Estimating information rates of Bernoulli-Gaussian impulsive noise channels in Rayleigh fading. IEEE Transactions on Information Theory, 62(6), 1845–1856.

    Google Scholar 

  18. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Tables of integrals, series, and products (6th ed.). New York: Academic Press.

    MATH  Google Scholar 

  19. Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions (9th ed.). New York: Dover.

    MATH  Google Scholar 

  20. Nica, A., & Speicher, R. (2006). Lectures on the combinatorics of free probability. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  21. Duncan, T. E. (1970). On the calculation of mutual information. SIAM Journal on Applied Mathematics, 19, 215–220.

    Article  MathSciNet  MATH  Google Scholar 

  22. Muller, K. (2001). Computing the confluent hypergeometric function, M (a, b, x). Numerische Mathematik, 90(1), 179–196.

    Article  MathSciNet  MATH  Google Scholar 

  23. Voiculescu, D. (1986). Addition of certain non-commuting random variables. Journal of Functional Analysis, 66, 323–346.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhyacharan Bhaskar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaka, A., Chauhan, S., Bhaskar, V. et al. Statistical Approach for Performance Analysis of Multipath Scattering Environment. Wireless Pers Commun 98, 743–757 (2018). https://doi.org/10.1007/s11277-017-4893-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4893-9

Keywords

Navigation