Skip to main content

Advertisement

A Fuzzy Congestion Control Protocol Based on Active Queue Management in Wireless Sensor Networks with Medical Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless Sensor Network has been widely used in a variety of applications such as; medical, agriculture, military, monitoring environment and so on. In healthcare wireless sensor networks, sensors which are placed on specific parts of the patient’s body, detect patient’s vital signs and transmit them to a medical center. As a matter of fact, too many of these sensors begin to simultaneously send the information congestion which is likely to happen in a network. In other words, when the sensors on the patient’s body are constantly sending data packets, the congestion is more likely to happen. This could result in an increase of packet loss ratio and thus efficiency decreases and it affects the overall performance of the system, In this regard, so the congestion control is a major challenge. Congestion detection and control are essential for such systems. In this protocol a new active queue management method is proposed to determine packet loss probability. The proposed AQM integrates the random early detection and fuzzy proportional integral derivative (FuzzyPID) controller methods together. When fuzzy logic combines with PID, it helps to control the target buffer queue. A fuzzy logical controller also estimates and adjusts the sending rate of each node. With the help of OPNET simulator and MATLAB, we compared this proposed protocol with Priority-based Congestion Control protocol and Optimized Congestion management protocol protocols, and simulation results suggest that the proposed protocol performs better than other approaches regarding aspects such as data loss rate and end-to-end delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Khanafer, M., Guennoun, M., & Mouftah, H. T. (2010). Intrusion detection system for WSN-based intelligent transportation systems. In Global telecommunications conference (GLOBECOM 2010), 2010 IEEE (pp. 1–6). IEEE. doi: 10.1109/GLOCOM.2010.5683730.

  2. Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113. doi:10.1109/MCOM.2013.6553686.

    Article  Google Scholar 

  3. Gentili, C., Valenza, G., Nardelli, M., Lanatà, A., Bertschy, G., Weiner, L., et al. (2017). Longitudinal monitoring of heartbeat dynamics predicts mood changes in bipolar patients: A pilot study. Journal of Affective Disorders, 209, 30–38.

    Article  Google Scholar 

  4. Mishra, M., Mishra, S., Mishra, B. K., & Choudhury, P. (2017). Analysis of power aware protocols and standards for critical E-health applications. In Internet of things and big data technologies for next generation healthcare (pp. 281–305). Springer International Publishing.

  5. Ifrim, C., Pintilie, A. M., Apostol, E., Dobre, C., & Pop, F. (2017). The art of advanced healthcare applications in big data and IoT systems. In Advances in mobile cloud computing and big data in the 5G Era (pp. 133–149). Springer International Publishing.

  6. Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. (2011). Body area networks: A survey. Mobile Networks and Applications, 16(2), 171–193.

    Article  Google Scholar 

  7. Moravejosharieh, A., & Lloret, J. (2016). A survey of IEEE 802.15.4 effective system parameters for wireless body sensor networks. International Journal of Communication Systems, 29(7), 1269–1292. doi:10.1002/dac.3098

    Article  Google Scholar 

  8. Talha, U., Asif, M., Mohani, S., & Ahmad, J. (2013). Body area networks (BANs)-an overview with smart sensors based telemedical monitoring system. International Journal of Computer Applications, 84(8), 19.

    Article  Google Scholar 

  9. Aweya, J., Ouellette, M., & Montuno, D. Y. (2002). DRED: A random early detection algorithm for TCP/IP networks. International Journal of Communication Systems, 15(4), 287–307.

    Article  MATH  Google Scholar 

  10. Ryu, S. (2004). PAQM: an adaptive and proactive queue management for end-to-end TCP congestion control. International Journal of Communication Systems, 17(8), 81-1–832.

    Article  Google Scholar 

  11. Masoumzadeh, S. S., Meshgi, K., Ghidari, S. S., & Taghizadeh, G. (2011). FQL-RED: an adaptive scalable schema for active queue management. International Journal of Network Management, 21(2), 147–167.

    Article  Google Scholar 

  12. Zhang, C., Khanna, M., & Tsaoussidis, V. (2004). Experimental assessment of RED in wired/wireless networks. International Journal of Communication Systems, 17(4), 287–302.

    Article  Google Scholar 

  13. Vilanova, R., Alfaro, V. M., & Arrieta, O. (2012). Robustness in PID control. In: Vilanova R., Visioli A. (eds) PID control in the third millennium (pp. 113–145). London: Springer.

  14. Xiong, N., Vasilakos, A. V., Yang, L. T., Wang, C. X., Kannan, R., Chang, C. C., et al. (2010). A novel self-tuning feedback controller for active queue management supporting TCP flows. Information Sciences, 180(11), 2249–2263.

    Article  MathSciNet  Google Scholar 

  15. Kahe, G., Jahangir, A. H., & Ebrahimi, B. (2014). A compensated PID active queue management controller using an improved queue dynamic model. International Journal of Communication Systems, 27(12), 4543–4563.

    Article  Google Scholar 

  16. Golnaraghi, F., & Kuo, B. C. (2010). Automatic control systems. Complex Variables, 2, 1–1.

    Google Scholar 

  17. Shokouhifar, M., & Jalali, A. (2017). Optimized sugeno fuzzy clustering algorithm for wireless sensor networks. Engineering Applications of Artificial Intelligence, 60, 16–25.

    Article  Google Scholar 

  18. Christo, M. S., Meenakshi, S., & Subhashini, R. (2017). An intelligent fuzzy beta reputation model for securing information in P2P health care applications. Biomedical Research, pp. 1–1.

  19. Maiti, P., Sahoo, B., Turuk, A. K., & Satpathy, S. (2017). Sensors data collection architecture in the internet of mobile things as a service (IoMTaaS) platform.

  20. Saleh, A. I., Abo-Al-Ez, K. M., & Abdullah, A. A. (2017). A multi-aware query driven (MAQD) routing prflootocol for mobile wireless sensor networks based on neuro-fuzzy inference. Journal of Network and Computer Applications, 88, 72.

    Article  Google Scholar 

  21. Gajjar, S., Sarkar, M., & Dasgupta, K. (2016). FAMACROW: Fuzzy and ant colony optimization based combined mac, routing, and unequal clustering cross-layer protocol for wireless sensor networks. Applied Soft Computing, 43, 235–247.

    Article  Google Scholar 

  22. Bouazzi, I., Bhar, J., & Atri, M. (2017). Priority-based queuing and transmission rate management using a fuzzy logic controller in WSNs. ICT Express.

  23. Taheri, H., Neamatollahi, P., Younis, O. M., Naghibzadeh, S., & Yaghmaee, M. H. (2012). An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Networks, 10(7), 1469–1481.

    Article  Google Scholar 

  24. Ee, C.T., & Bajcsy, R. Congestion control and fairness for many-to-one routing in sensor networks. In Proceedings of the 2nd international conference on embedded networked sensor systems. 2004. ACM. doi:10.1145/1031495.1031513.

  25. Wang, C., Li, B., Sohraby, K., Daneshmand, M., & Hu, Y. (2007). Upstream congestion control in wireless sensor networks through cross-layer optimization. IEEE Journal on Selected Areas in Communications. doi:10.1109/jsac.2007.070514.

    Google Scholar 

  26. Misra, S., Tiwari, V., & Obaidat, M. S. (2009). LACAS: Learning automata-based congestion avoidance scheme for healthcare wireless sensor networks. Selected Areas in Communications. IEEE Journal on, 27(4), 466–479. doi:10.1109/jsac.2009.090510.

    Google Scholar 

  27. Samiullah, M., S. Abdullah, & Anwar, S. (2012). Queue management based congestion control in wireless body sensor network. In Informatics, electronics & vision (ICIEV), 2012 international conference on. 2012. IEEE. doi:10.1109/iciev.2012.6317349.

  28. Monowar, M. M., et al. (2012). Prioritized heterogeneous traffic-oriented congestion control protocol for WSNs. International Arabian Journal Infornation Technology, 9(1), 39–48.

    Google Scholar 

  29. Yaghmaee, M. H., Bahalgardi, N. F., & Adjeroh, D. (2013). A prioritization based congestion control protocol for healthcare monitoring application in wireless sensor networks. Wireless Personal Communications, 72(4), 2605–2631.

    Article  Google Scholar 

  30. Soyguder, S., Karakose, M., & Alli, H. (2009). Design and simulation of self-tuning PID-type fuzzy adaptive control for an expert HVAC system. Expert Systems with Applications, 36(3), 4566–4573.

    Article  Google Scholar 

  31. Rezaee, A. A., et al. (2014). HOCA: healthcare aware optimized congestion avoidance and control protocol for wireless sensor networks. Journal of Network and Computer Applications, 37, 216–228.

    Article  Google Scholar 

  32. Rezaee, A. A., Yaghmaee, M. H., & Rahmani, A. M. (2014). Optimized congestion management protocol for healthcare wireless sensor networks. Wireless Personal Communications, 75(1), 11–34.

    Article  Google Scholar 

  33. Chen, J. V., et al. (2012). Improving network congestion: A RED-based FuzzyPID approach. Computer Standards and Interfaces, 34(5), 426–438.

    Article  Google Scholar 

  34. Gambhir, S., Tickoo, V., & Kathuria, M. (2015). Priority based congestion control in WBAN. In Contemporary computing (IC3), 2015 eighth international conference on (pp. 428–433). IEEE.

  35. Chuan, Z., & Xuejiao, L., A robust AQM algorithm based on fuzzy-inference. In Measuring technology and mechatronics automation, 2009. ICMTMA’09. international conference on (Vol. 2, pp. 534537). IEEE. doi: 10.1109/ICMTMA.2009.520.

  36. Yi, S., Kappes, M., Garg, S., Deng, X., Kesidis, G., & Das, C. R. (2008). Proxy-RED: An AQM scheme for wireless local area networks. Wireless Communications and Mobile Computing, 8(4), 421–434.

    Article  Google Scholar 

  37. Aghdam, S. M., Khansari, M., Rabiee, H. R., & Salehi, M. (2014). WCCP: A congestion control protocol for wireless multimedia communication in sensor networks. Ad Hoc Networks, 13, 516–534.

    Article  Google Scholar 

  38. Mougy, A. E., et al. (2014). A context and application-aware framework for resource management in dynamic collaborative wireless M2 M networks. Journal of Network and Computer Application, 44, 30–45.

    Article  Google Scholar 

  39. Yaghmaee, M. H., & Adjeroh, D. (2008). A new priority based congestion control protocol for wireless multimedia sensor networks. In World of wireless, mobile and multimedia networks, 2008. WoWMoM 2008. 2008 international symposium on a (pp. 1–8). IEEE.

  40. Gunasundari, R., Arthi, R., & Priya, S. (2010). An efficient congestion avoidance scheme for mobile healthcare wireless sensor networks. International Journal on Advanced Networking and Applications, 2(3), 693–698.

    Google Scholar 

  41. Rezaee, A. A., Yaghmaee, M. H., & Rahmani, A. M. (2013). COCM: Class based optimized congestion management protocol for healthcare. Wireless Sensor Networks, 5, 137.

    Article  Google Scholar 

  42. Farzaneh, N., & Yaghmaee, M. H. (2011). Joint active queue management and congestion control protocol for healthcare applications in wireless body sensor networks. In International conference on smart homes and health telematics (pp. 88–95). Springer Berlin Heidelberg.

  43. Ghanavati, S., Abawaji, J., & Izadi, D. (2015). A congestion control scheme based on fuzzy logic in wireless body area networks. In Network computing and applications (NCA), 2015 IEEE 14th international symposium on (pp. 235–242). IEEE.

  44. Baek, Y. M., Lee, B. H., Li, J., Shu, Q., Han, J. H., & Han, K. J. (2009, October). An adaptive rate control for congestion avoidance in wireless body area networks. In Cyber-enabled distributed computing and knowledge discovery, 2009. CyberC’09. International conference on (pp. 1–4). IEEE.

  45. Ghanavati, S., Abawajy, J., & Izadi, D. (2016). ECG rate control scheme in pervasive health care monitoring system. In Fuzzy systems (FUZZ-IEEE), 2016 IEEE international conference on (pp. 2265–2270). IEEE.

  46. Hu, J., Qian, Q., Fang, A., Wu, S., & Xie, Y. (2016). Optimal data transmission strategy for healthcare-based wireless sensor networks: A stochastic differential game approach. Wireless Personal Communications, 89(4), 1295–1313.

    Article  Google Scholar 

  47. Samadi Gharajeh, M., & Alizadeh, M. (2016). OPCA: Optimized prioritized congestion avoidance and control for wireless body sensor networks. International Journal of Sensors Wireless Communications and Control, 6(2), 118–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ali Rezaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaee, A.A., Pasandideh, F. A Fuzzy Congestion Control Protocol Based on Active Queue Management in Wireless Sensor Networks with Medical Applications. Wireless Pers Commun 98, 815–842 (2018). https://doi.org/10.1007/s11277-017-4896-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4896-6

Keywords