Skip to main content

Advertisement

Log in

Bidirectional Communication in Full Duplex Wireless-Powered Relaying Networks: Time-Switching Protocol and Performance Analysis

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we consider two-way full-duplex relay with energy harvesting system, in which the relay node harvests transmitted power from the two source nodes to forward signals to destinations. We also analyze the relay network model with decode-and-forward protocol for information cooperation and time switching-based relaying protocol for power transfer. In particular, the outage probability, average throughput and optimal energy harvesting time of novel scheme in simultaneous wireless information and power transfer are presented. We obtain analytic closed-form expressions for both tight bounded and asymptotic of outage probability and average throughput of system. Using numerical and analytic simulations, the performances of different situations are presented and discussed more clearly. The results show that the better performance is achieved in case of worse self-interference. As important result, the better self interference cancellation leads to superior system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Do, D.-T., & Nguyen, H.-S. (2016). A tractable approach to analyze the energy-aware two-way relaying networks in presence of co-channel interference. EURASIP Journal on Wireless Communications and Networking, 2016(271). doi:10.1186/s13638-016-0777-z.

    Article  Google Scholar 

  2. Do, D.-T. (2015). Power switching protocol for two-way relaying network under hardware impairments. Radioengineering, 24(3), 765–771.

    Article  Google Scholar 

  3. Huang, W., Chen, H., Li, Y., & Vucetic, B. (2016). On the performance of multi-antenna wireless-powered communications with energy beamforming. IEEE Transactions on Vehicular Technology, 65(3), 1801–1808.

    Article  Google Scholar 

  4. Nguyen, H. S., Do, D. T., & Voznak, M. (2016). Two-way relaying networks in green communications for 5G: Optimal throughput and tradeoff between relay distance on power splitting-based and time switching-based relaying SWIPT. AEU-International Journal of Electronics and Communications, 70(12), 1637–1644.

    Article  Google Scholar 

  5. Liang, H., Zhong, C., Suraweera, H. A., Zheng, G., & Zhang, Z. (2017). Optimization and analysis of wireless powered multi-antenna cooperative systems. IEEE Transactions on Wireless Communications, 16(5), 3267–3281.

    Article  Google Scholar 

  6. Ho, C. K., & Zhang, R. (2012). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing, 60(9), 4808–4818.

    Article  MathSciNet  Google Scholar 

  7. Tutuncuoglu, K., & Yener, A. (2012). Optimum transmission policies for battery limited energy harvesting nodes. IEEE Transactions on Wireless Communications, 11(3), 1180–1189.

    Article  Google Scholar 

  8. Liu, L., Zhang, R., & Chua, K. C. (2013). Wireless information transfer with opportunistic energy harvesting. IEEE Transactions on Wireless Communications, 12(1), 288–300.

    Article  Google Scholar 

  9. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy trade-off. IEEE Transactions on Communications, 61(11), 4754–4767.

    Article  Google Scholar 

  10. Fouladgar, A. M., & Simeone, O. (2012). On the transfer of information and energy in multi-user systems. IEEE Communications Letters, 16(11), 1733–1736.

    Article  Google Scholar 

  11. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  12. Ahmed, I., Ikhlef, A., Schober, R., & Mallik, R. K. (2014). Power allocation for conventional and buffer-aided link adaptive relaying systems with energy harvesting nodes. IEEE Transactions on Wireless Communications, 13(3), 1182–1195.

    Article  Google Scholar 

  13. Ding, Z., Perlaza, S., Esnaola, I., & Poor, H. (2014). Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Transactions on Wireless Communications, 13(2), 846–860.

    Article  Google Scholar 

  14. Louie, R. H., Li, Y., & Vucetic, B. (2010). Practical physical layer network coding for two-way relay channels: Performance analysis and comparison. IEEE Transactions on Wireless Communications, 9(2), 764–777.

    Article  Google Scholar 

  15. Kim, S. J., Devroye, N., Mitran, P., & Tarokh, V. (2011). Achievable rate regions and performance comparison of half duplex bi-directional relaying protocols. IEEE Transactions on Information Theory, 57(10), 6405–6418.

    Article  MathSciNet  MATH  Google Scholar 

  16. Avestimehr, A. S., Sezgin, A., & Tse, D. N. (2008) Approximate capacity of the two-way relay channel: A deterministic approach, Proceedings of the 46th annual allerton conference on communication, control, and computing (pp. 1582–1589), September 23–26, 2008.

  17. Do, D.-T. (2015). Time power switching based relaying protocol in energy harvesting mobile node: Optimal throughput analysis. Mobile Information Systems, 2015, 1–8.

    Article  Google Scholar 

  18. Do, D.-T. (2016). Energy-aware two-way relaying networks under imperfect hardware: Optimal throughput design and analysis. Telecommunication Systems, 62(2), 449–459.

    Article  Google Scholar 

  19. Yang, J., Liu, X., & Yang, Q. (2014). Power allocation of two-way full-duplex af relay under residual self-interference, Proceedings of IEEE 14th international symposium on communications and information technologies (ISCIT), Incheon, South Korea (pp. 213–217).

  20. Cui, H., Ma, M., Song, L., & Jiao, B. (2014). Relay selection for two-way full duplex relay networks with amplify-and-forward protocol. IEEE Trans on Wireless Communications, 13(7), 3768–3777.

    Article  Google Scholar 

  21. Zhong, C., Suraweera, H. A., Zheng, G., & Krikidis, I. (2014). Wireless information and power transfer with full duplex relaying. IEEE Transactions on Communications, 62(10), 3447–3461.

    Article  Google Scholar 

  22. Mohammadi, M., Chalise, B. K., Suraweera, H. A., Zhong, C., Zheng, G., & Krikidis, I. (2016). Throughput analysis and optimization of wireless-powered multiple antenna full-duplex relay systems. IEEE Transactions on Communications, 64(4), 1769–1785.

    Article  Google Scholar 

  23. Zeng, Y., & Zhang, R. (2015). Full-duplex wireless-powered relay with self-energy recycling. IEEE Wireless Communications Letters, 4(2), 201–204.

    Article  Google Scholar 

  24. Gradshteyn, I. S., & Ryzhik, I. M. (1984). Table of integrals, series, and products (5th ed.). USA: Academic Press Inc.

    MATH  Google Scholar 

  25. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1992). Integrals and Series. New York, NY, USA: Gordon and Breach.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Thuan Do.

Appendices

Appendix 1: Proof of Lemma 1

In Lemma 1, the integral formula can be obtained by using [25, vol. 4, eq. (1.1.2.3)] and re-expressed as

$$\begin{aligned} \begin{aligned} \psi \left( {\lambda ,\kappa ,\varepsilon } \right)&\buildrel \varDelta \over = \int \limits _0^\infty {\left( {\kappa x + \varepsilon } \right) \times \mathrm{K}_2 \left( {2\sqrt{\kappa x + \varepsilon } } \right) \exp \left( { - \lambda x} \right) dx} \\&= \mathrm{{exp}}\left( {\frac{{\varepsilon \lambda }}{\kappa }} \right) \left\{ {\underbrace{\kappa \int \limits _0^\infty {x\mathrm{K}_2 \left( {2\sqrt{\kappa x} } \right) \exp \left( { - \lambda x} \right) dx} }_{\psi _1 }} \right. \left. { - \underbrace{\frac{1}{\kappa }\int \limits _0^\varepsilon {y\mathrm{K}_2 \left( {2\sqrt{y} } \right) \exp \left( { - \frac{{\lambda y}}{\kappa }} \right) dy} }_{\psi _2 }} \right\} . \\ \end{aligned} \end{aligned}$$
(25)

The first term in (25) can be fulfilled by applying [25, vol. 4, eq. (3.16.2.4)]

$$\begin{aligned} \begin{aligned} \psi _1&= \kappa \int \limits _0^\infty {x\mathrm{K}_2 \left( {2\sqrt{\kappa }\sqrt{x} } \right) \exp \left( { - \lambda x} \right) dx} \\&= \frac{{\kappa ^2 }}{{\lambda ^3 }}\exp \left( { - \frac{\kappa }{\lambda }} \right) \varGamma \left( { - 2,\frac{\kappa }{\lambda }} \right) . \\ \end{aligned} \end{aligned}$$
(26)

The second term in (25) is difficult for closed-form because of the Bessel function and exponential function, hence we make an approximation value as follow

$$\begin{aligned} \psi _2&= \frac{1}{\kappa }\int \limits _0^\varepsilon {y\mathrm{K}_2 \left( {2\sqrt{y} } \right) \exp \left( { - \frac{{\lambda y}}{\kappa }} \right) dy} \\&\mathop = \limits ^{(a)} \sum \limits _{m = 0}^\infty {\frac{{\left( { - \lambda } \right) ^m }}{{\kappa ^{m + 1} }}\int \limits _0^\varepsilon {\frac{{y^{m + 1} }}{{m!}}\mathrm{K}_2 \left( {2\sqrt{y} } \right) dy} } \\&\mathop = \limits ^{(b)} \frac{1}{2}\sum \limits _{m = 0}^\infty {\frac{{\left( { - \lambda } \right) ^m \varepsilon ^{m + 1} }}{{m!\kappa ^{m + 1} }}} G_{1,3}^{2,1} \left( {\varepsilon \left| {\begin{array}{*{20}c} {2 - m} \\ {2,0,1 - m} \\ \end{array}} \right. } \right) , \\ \end{aligned}$$
(27)

where (a) is fulfilled by using the M-th order Taylor series approximation of the exponential function in [24, eq. (1.211.1)]; step (b) can be expressed by using eq. [24, eq. (6.592.2)]. Finally, substituting (26) and (27) into (25) the Lemma 1 is derived.

Appendix 2: Proof of Proposition 1

Putting \(X = {\left| {{h_i}} \right| ^2}\) , \(Y = {\left| {{h_j}} \right| ^2}\) and setting \(U = \frac{{{{\left| {{h_i}} \right| }^2}}}{{{{\left| {{h_i}} \right| }^2} + {{\left| {{h_j}} \right| }^2}}} = \frac{X}{{X + Y}}\) and \(V = {\left| {{h_i}} \right| ^2} + {\left| {{h_j}} \right| ^2} = X + Y\). It can be observed that the quantity of U is between zero and one, i.e. \(0 \le U \le 1\). Also, it can be easily shown that \(X = UV\) and \(Y = V\left( {1 - U} \right)\). Now, we can rewrite the SINRs of \(i \rightarrow r\) hop and \(r \rightarrow j\) as below

$$\begin{aligned} {\gamma _{i \rightarrow r}} = \frac{{{\gamma _s}{{\left| {{h_i}} \right| }^2}}}{{\mu {\gamma _s}\left( {{{\left| {{h_i}} \right| }^2} + {{\left| {{h_j}} \right| }^2}} \right) {{\left| {{f_r}} \right| }^2} + 1}} \approx \frac{U}{{\mu {{\left| {{f_r}} \right| }^2}}} = \gamma _{i \rightarrow r} ^ {\mathrm{{asym}}}, \end{aligned}$$
(28)

and

$$\begin{aligned} {\gamma _{r \rightarrow j}} = \frac{{\mu {\gamma _s}V{{\left| {{g_j}} \right| }^2}}}{{{\gamma _s}{{\left| {{f_j}} \right| }^2} + 1}}. \end{aligned}$$
(29)

It is noted that, in this analyzing performance, we consider the asymptotic SINR of \(i \rightarrow r\) hop. Hence, this CDF expression is lower bounded.

The Jacobian of the transformation from \(\left( {U,V} \right)\) back to \(\left( {X,Y} \right)\) can be computed as

$$\left| J \right| = \left| {\begin{array}{ll} {\frac{{\partial X\left( {u,v} \right) }}{{\partial u}}}& \quad {\frac{{\partial X( {u,v} )}}{{\partial v}}}\\ {\frac{{\partial Y( {u,v} )}}{{\partial u}}}& \quad {\frac{{\partial Y( {u,v} )}}{{\partial v}}} \end{array}} \right| = \left| {\begin{array}{ll} v& \quad u\\ { - v}& \quad {1 - u} \end{array}} \right| = v.$$
(30)

Since assumed that \({\lambda _{h_a}} = {\lambda _{h_b}} = \lambda _h\) the joint PDF of two R.Vs, X and Y, can be revealed as

$$\begin{aligned} {f_{X,Y}}\left( {x,y} \right) = {f_X}\left( x \right) \times {f_Y}\left( y \right) = \frac{1}{{{\lambda _h ^2}}}\exp \left( { - \frac{{x + y}}{\lambda _h }} \right) . \end{aligned}$$
(31)

Since the transformation is invertible, applying the change of variable formula, yield

$$\begin{aligned} {f_{U,V}}\left( {u,v} \right) = \left| J \right| {f_{X,Y}}\left( {u,v} \right) = \frac{v}{{{\lambda _h ^2}}}\exp \left( { - \frac{v}{\lambda _h }} \right) . \end{aligned}$$
(32)

And the PDF of V is determined as

$$\begin{aligned} \begin{aligned} {f_V}\left( v \right)&= \int \limits _0^1 {{f_{U,V}}\left( {u,v} \right) du} \\&= \frac{v}{{{\lambda _h ^2}}}\exp \left( { - \frac{v}{\lambda _h }} \right) . \end{aligned} \end{aligned}$$
(33)

Similarly, the PDF of U is given as

$$\begin{aligned} \begin{aligned} {f_U}\left( u \right)&= \int \limits _0^\infty {{f_{U,V}}\left( {u,v} \right) dv} \\&= \int \limits _0^\infty {\frac{v}{{{\lambda _h ^2}}}\exp \left( { - \frac{v}{\lambda _h }} \right) dv} = 1. \end{aligned} \end{aligned}$$
(34)

Then substituting (28) and (29) into (18), we get

$$\begin{aligned} {F_{{\gamma _i}}}\left( t \right)&= \Pr \left\{ {\min \left( {\frac{U}{{\mu {{\left| {{f_r}} \right| }^2}}},\frac{{\mu {\gamma _s}V {{\left| {{g_i}} \right| }^2}}}{{{\gamma _s}{{\left| {{f_i}} \right| }^2} + 1}}} \right)< t} \right\} \\&= 1 - \left[ {1 - \underbrace{\Pr \left\{ {\frac{U}{{\mu {{\left| {{f_r}} \right| }^2}}}< t} \right\} }_{{J_1}}} \right] \times \left[ {1 - \underbrace{\Pr \left\{ {\frac{{\mu {\gamma _s}V{{\left| {{g_i}} \right| }^2}}}{{{\gamma _s}{{\left| {{f_i}} \right| }^2} + 1}} < t} \right\} }_{{J_2}}} \right] . \end{aligned}$$
(35)

First, we evaluate

$$\begin{aligned} \begin{aligned} {J_1}&= \Pr \left\{ {\frac{U}{{\mu {{\left| {{f_r}} \right| }^2}}} < t} \right\} \\&= \int \limits _0^1 {\exp \left( {\frac{{ - u}}{{\mu {\lambda _{{f_r}}}t}}} \right) du} \\&= \mu {\lambda _{{f_r}}}t\left( {1 - \exp \left( {\frac{{ - 1}}{{\mu {\lambda _{{f_r}}}t}}} \right) } \right) . \end{aligned} \end{aligned}$$
(36)

In order to compute the second term in (35), we first put \(Z = V{\left| {{g_i}} \right| ^2}\). The CDF of variable Z can be calculated as

$$\begin{aligned} {F_Z}\left( z \right)&= \Pr \left\{ {V{{\left| {{g_i}} \right| }^2} < z} \right\} = \int \limits _0^\infty {{F_{{{\left| {{g_i}} \right| }^2}}} \left( {\frac{z}{v}} \right) {f_V}\left( v \right) dv} \\&= \int \limits _0^\infty {\left\{ {1 - \exp \left( { - \frac{z}{{{\lambda _g}v}}} \right) } \right\} \frac{v}{{\lambda _h^2}}\exp \left( { - \frac{v}{{{\lambda _h}}}} \right) } dx\\&= 1 - \frac{{2z}}{{{\lambda _g}{\lambda _h}}}{\mathrm{K}_2}\left( {2\sqrt{\frac{z}{{{\lambda _g}{\lambda _h}}}} } \right) . \end{aligned}$$
(37)

Now, the second term in (35), \(J_2\), can be computed as

$$\begin{aligned} \begin{aligned} {J_2}&= \Pr \left\{ {\frac{{\mu {\gamma _s}Z}}{{{\gamma _s} {{\left| {{f_i}} \right| }^2} + 1}} < t} \right\} \\&= \int \limits _0^\infty {{F_Z}\left( {\frac{{t{\gamma _s}x + t}}{{\mu {\gamma _s}}}} \right) {f_{{{\left| {{f_i}} \right| }^2}}}\left( x \right) dx} \\&= \frac{1}{{{\lambda _{{f_i}}}}}\int \limits _0^\infty {\left\{ {1 - \frac{2}{{{\lambda _g}{\lambda _h}}}\left( {\frac{{t{\gamma _s}x + t}}{{\mu {\gamma _s}}}} \right) {\mathrm{K}_2} \left( {2\sqrt{\frac{1}{{{\lambda _g}{\lambda _h}}}\left( {\frac{{t{\gamma _s}x + t}}{{\mu {\gamma _s}}}} \right) } } \right) } \right\} \exp \left( {\frac{{ - x}}{{{\lambda _{{f_i}}}}}} \right) dx} \\&= 1 - \frac{1}{{{\lambda _{{f_i}}}}} \psi \left( {\frac{1}{{{\lambda _{{f_i}}}}},\frac{t}{{\mu {\lambda _g}{\lambda _h}}},\frac{t}{{\mu {\gamma _s}{\lambda _g}{\lambda _h}}}} \right) , \end{aligned} \end{aligned}$$
(38)

where the last equality can be obtained by applying Lemma 1. Finally, substituting (36) and (38) into (35) and some simple manipulation, the Proposition 1 is derived exactly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, XX., Do, DT. Bidirectional Communication in Full Duplex Wireless-Powered Relaying Networks: Time-Switching Protocol and Performance Analysis. Wireless Pers Commun 98, 879–896 (2018). https://doi.org/10.1007/s11277-017-4899-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4899-3

Keywords

Navigation