Skip to main content
Log in

An Evaluation of Routing Protocols for Vehicular Ad-Hoc Network Considering the Video Stream

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In promising application field such as Vehicular Ad hoc Networks, the ability of the driver to exchange video streams smoothly over the network regardless of his position is one of the most incentive features. However, dynamic nature of mobility and current obstacles in urban areas bring considerable challenges to routing. To give gratifying transmission performances, the vehicular networks must ensure Quality of Experience as well as keeping a tolerable Quality of Service (QoS). Furthermore, studying and comparing the efficiency of existing protocols have been challenging since each protocol is appropriate to a specific environment of application. Additionally, the lack in literature of quantitative comparison between the existing video stream requirements-based study, led us in this survey to analyze ten promising routing protocols focusing on communication challenges. Since the protocol chosen in the industrial world depends on certain metrics including video stream requirements, the paper shows also which protocols are suitable for MPEG-4 video quality by raking merits of QoS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cunha, F., Villas, L., Boukerche, A., Maia, G., Viana, A., Mini, R., et al. (2016). Data communication in VANETs: Survey, applications and challenges. Ad Hoc Networks, 44, 90–103.

    Article  Google Scholar 

  2. Daniel, A., Paul, A., Ahmad, A., & Rho, S. (2016). Cooperative intelligence of vehicles for intelligent transportation systems (ITS). Wireless Personal Communications, 87(2), 461–484.

    Article  Google Scholar 

  3. Kumar, N., Chilamkurti, N., & Rodrigues, J. J. (2014). Learning automata-based opportunistic data aggregation and forwarding scheme for alert generation in vehicular ad hoc networks. Computer Communications, 39, 22–32.

    Article  Google Scholar 

  4. Bekris, K. E., Tsianos, K. I., & Kavraki, L. E. (2009). Safe and distributed kinodynamic replanning for vehicular networks. Mobile Networks and Applications, 14(3), 292–308.

    Article  Google Scholar 

  5. Gonzalez, A. J., Alcober, J., de Pozuelo, R. M., Pinyol, F., & Ghafoor, K. Z. (2011). Context-aware multimedia service composition using quality assessment. In 2011 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1–6). IEEE.

  6. Joe, M. M., & Ramakrishnan, B. (2016). Review of vehicular ad hoc network communication models including WVANET (Web VANET) model and WVANET future research directions. Wireless Networks, 22(7), 2369–2386.

    Article  Google Scholar 

  7. Joe, M. M., & Ramakrishnan, B. (2015). WVANET: Modelling a novel web based communication architecture for vehicular network. Wireless Personal Communications, 85(4), 1987–2001.

    Article  Google Scholar 

  8. Tyagi, P., & Dembla, D. (2016). Performance analysis and implementation of proposed mechanism for detection and prevention of security attacks in routing protocols of vehicular ad-hoc network (VANET). Egyptian Informatics Journal, 18(2), 133–139.

  9. Hasrouny, H., Samhat, A. E., Bassil, C., & Laouiti, A. (2017). VANet security challenges and solutions: A survey. Vehicular Communications, 7, 7–20.

  10. Mohammed, N. H., El-Moafy, H. N., Abdel-Mageid, S. M., & Marie, M. I. (2017). Mobility management scheme based on smart buffering for vehicular networks. International Journal of Computer Networks and Applications (IJCNA), 4(2), 35–46.

    Google Scholar 

  11. Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems, 50(4), 217–241.

    Article  Google Scholar 

  12. Xu, S., Guo, P., Xu, B., & Zhou, H. (2012). Study on qos of video communication over VANET. In Information Computing and Applications (pp. 730–738). Springer.

  13. Dua, A., Kumar, N., & Bawa, S. (2014). A systematic review on routing protocols for vehicular ad hoc networks. Vehicular Communications, 1, 33–52.

    Article  Google Scholar 

  14. Mohapatra, S., & Kanungo, P. (2012). Performance analysis of AODV, DSR, OLSR and DSDV routing protocols using NS2 Simulator. Procedia Engineering, 30, 69–76.

    Article  Google Scholar 

  15. Husain, A., & Sharma, S. (2015). Simulated analysis of location and distance based routing in VANET with IEEE802. 11p. Procedia Computer Science, 57, 323–331.

    Article  Google Scholar 

  16. Nefti, S., & Sedrati, M. (2016). PSNR and jitter analysis of routing protocols for video streaming in sparse MANET networks, using NS2 and the evalvid framework. International Journal of Computer Science and Information Security. arXiv preprint arXiv:1604.03217.

  17. Sharef, B. T., Alsaqour, R. A., & Ismail, M. (2013). Comparative study of variant position-based VANET routing protocols. Procedia Technology, 11, 532–539.

    Article  Google Scholar 

  18. Qadri, N. N., Fleury, M., Rofoee, B. R., Altaf, M., & Ghanbari, M. (2012). Robust P2P multimedia exchange within a VANET. Wireless Personal Communications, 63(3), 561–577.

    Article  Google Scholar 

  19. Martinez, F. J., Fogue, M., Toh, C. K., Cano, J. C., Calafate, C. T., & Manzoni, P. (2013). Computer simulations of VANETs using realistic city topologies. Wireless Personal Communications, 69(2), 639–663.

    Article  Google Scholar 

  20. Wang, S. Y., Wang, P. F., Li, Y. W., & Lau, L. C. (2011). Design and implementation of a more realistic radio propagation model for wireless vehicular networks over the NCTUns network simulator. In Wireless Communications and Networking Conference (WCNC) (pp. 1937–1942). IEEE.

  21. Perkins, C. E., & Royer, E. M. (1999). Ad-hoc on-demand distance vector routing. In Proceedings of the Second IEEE Workshop on Mobile Computer Systems and Applications (p. 90). IEEE Computer Society.

  22. Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. In ACM SIGCOMM Computer Communication Review (Vol. 24, pp. 234–244). ACM.

  23. Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. In Mobile Computing (pp. 153–181). Springer.

  24. Espensen, K. L., Kjeldsen, M. K., & Kristensen, L. M. (2008). Modelling and initial validation of the DYMO routing protocol for mobile ad-hoc networks. Lecture Notes in Computer Science, 5062, 152–170.

  25. Pei, G., Gerla, M., & Chen, T. W. (2000). Fisheye state routing: A routing scheme for ad hoc wireless networks. In 2000 IEEE International Conference on Communications, ICC 2000 (Vol. 1, pp. 70–74). IEEE.

  26. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (pp. 243–254). ACM.

  27. Al-Rabayah, M., & Malaney, R. (2012). A new scalable hybrid routing protocol for VANETs. IEEE Transactions on Vehicular Technology, 61(6), 2625–2635.

    Article  Google Scholar 

  28. Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., & Viennot, L. (2001). Optimized link state routing protocol for ad hoc networks. In Proceedings IEEE International Multi Topic Conference , IEEE INMIC 2001. Technology for the 21st Century (pp. 62–68).

  29. Zhao, J., & Cao, G. (2008). VADD: Vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 57(3), 1910–1922.

    Article  Google Scholar 

  30. Haas, Z. J., & Pearlman, M. R. (2001). ZRP: A hybrid framework for routing in ad hoc networks. In Ad hoc Networking (pp. 221–253). Addison-Wesley Longman Publishing Co., Inc.

  31. Nouh, M. S. A., El-ramly, S. H., Zaki, M., & Elsayed, H. A. (2016). Enhanced route discovery mechanism of ad-hoc on demand distance vector for MANET. International Journal of Computer Networks and Applications (IJCNA), 3(6), 129–138.

    Google Scholar 

  32. Sharma, S. K., & Sharma, S. (2017). Improvement over AODV considering QoS support in mobile ad-hoc networks. International Journal of Computer Networks and Applications (IJCNA), 4(2), 47–61.

    Article  Google Scholar 

  33. Namboodiri, V., Agarwal, M., & Gao, L. (2004). A study on the feasibility of mobile gateways for vehicular ad-hoc networks. In Proceedings of the 1st ACM International Workshop on Vehicular Ad hoc Networks (pp. 66–75). ACM.

  34. Billington, J., & Yuan, C. (2009). On modelling and analysing the dynamic MANET on-demand (DYMO) routing protocol. Trans. Petri nets and other models of concurrency (Vol. 3, pp. 98–126). Berlin: Springer.

  35. Walikar, G. A., & Biradar, R. C. (2017). A survey on hybrid routing mechanisms in mobile ad hoc networks. Journal of Network and Computer Applications, 77, 48–63.

    Article  Google Scholar 

  36. Ghafoor, K. Z., Lloret, J., Bakar, K. A., Sadiq, A. S., & Mussa, S. A. B. (2013). Beaconing approaches in vehicular ad hoc networks: A survey. Wireless Personal Communications, 73(3), 885–912.

    Article  Google Scholar 

  37. Gonçalves Filho, J., Patel, A., Batista, B. L. A., & Celestino, J. (2016). A systematic technical survey of DTN and VDTN routing protocols. Computer Standards & Interfaces, 48, 139–159.

    Article  Google Scholar 

  38. Mageid, S. A. (2017). Connectivity based positioning system for underground vehicular ad hoc networks. International Journal of Computer Networks and Applications (IJCNA), 4(1), 1–14.

    Article  Google Scholar 

  39. Ghafoor, K. Z., Lloret, J., Sadiq, A. S., & Mohammed, M. A. (2015). Improved geographical routing in vehicular ad hoc networks. Wireless Personal Communications, 80(2), 785–804.

    Article  Google Scholar 

  40. Mageid, S. A. (2016). Self-correcting localization scheme for vehicle to vehicle communication. International Journal of Computer Networks and Applications (IJCNA), 3(5), 95–107.

  41. Gupta, N., Prakash, A., & Tripathi, R. (2015). Medium access control protocols for safety applications in vehicular ad-hoc network: A classification and comprehensive survey. Vehicular Communications, 2(4), 223–237.

    Article  Google Scholar 

  42. Zeng, X., Tao, C., & Chen, Z. (2009). The application of DSRC technology in intelligent transportation system. In IET International Communication Conference on Wireless Mobile and Computing (CCWMC 2009) (pp. 265–268).

  43. Spaho, E., Ikeda, M., Barolli, L., & Xhafa, F. (2013). Performance comparison of OLSR and AODV protocols in a VANET crossroad scenario. In Information Technology Convergence (pp. 37–45). Springer.

  44. Ali, F., Shaikh, F. K., Ansari, A. Q., Mahoto, N. A., & Felemban, E. (2015). Comparative analysis of VANET routing protocols: On road side unit placement strategies. Wireless Personal Communications, 85(2), 393–406.

    Article  Google Scholar 

  45. Xu, S., Guo, P., Xu, B., & Zhou, H. (2013). QoS evaluation of VANET routing protocols. Journal of Networks, 8(1), 132–139.

    Article  Google Scholar 

  46. Rodrigues, D., Cerqueira, E., & Monteiro, E. (2008). Quality of service and quality of experience in video streaming. In Proceedings of the International Workshop on Traffic Management and Traffic Engineering for the Future Internet (FITraMEn2008), EuroNF NoE, Porto, Portugal (pp. 11–12).

  47. Xie, F., Hua, K., Wang, W., Ho, Y. H., et al. (2007). Performance study of live video streaming over highway vehicular ad hoc networks. In 2007 IEEE 66th Conference on Vehicular Technology, 2007. VTC-2007 Fall (pp. 2121–2125). IEEE.

  48. Xu, S. (2012). Simulated study on video communication over VANET. In World Automation Congress (WAC). IEEE.

  49. The network simulator ns-2. http://www.isi.edu/nsnam/ns.

  50. Harri, J., & Fiore, M. (2006). VanetMobiSim: Vehicular ad hoc network mobility extension to the CanuMobiSim framework. Institut Eurécom Department of Mobile Communications, 6904, 1–19.

    Google Scholar 

  51. De Felice, M., Cerqueira, E., Melo, A., Gerla, M., Cuomo, F., & Baiocchi, A. (2015). A distributed beaconless routing protocol for real-time video dissemination in multimedia VANETs. Computer Communications, 58, 40–52.

    Article  Google Scholar 

  52. Park, J. S., Lee, U., & Gerla, M. (2010). Vehicular communications: Emergency video streams and network coding. Journal of Internet Services and Applications, 1(1), 57–68.

    Article  Google Scholar 

  53. Wang, H., Divakaran, A., Vetro, A., Chang, S. F., & Sun, H. (2003). Survey of compressed-domain features used in audio-visual indexing and analysis. Journal of Visual Communication and Image Representation, 14(2), 150–183.

    Article  Google Scholar 

  54. Fitzek, F. H., & Reisslein, M. (2001). MPEG-4 and H. 263 video traces for network performance evaluation. IEEE Network, 15(6), 40–54.

    Article  Google Scholar 

  55. Xu, F., & Zhang, Y. J. (2006). Evaluation and comparison of texture descriptors proposed in MPEG-7. Journal of Visual Communication and Image Representation, 17(4), 701–716.

    Article  Google Scholar 

  56. Ziviani, A., Wolfinger, B. E., De Rezende, J. F., Duarte, O. C. M., & Fdida, S. (2005). Joint adoption of QoS schemes for MPEG streams. Multimedia Tools and Applications, 26(1), 59–80.

    Article  Google Scholar 

  57. Rahman, M. H., Morshed, M. M., & Rahman, M. U. (2014). Realistic vehicular mobility impact of FTM, IDM, IDM-IM and IDM-LC on VANETs. International Journal of Computer Applications, 90(11), 5–12.

  58. Härri, J., Fiore, M., Filali, F., & Bonnet, C. (2009). Vehicular mobility simulation with VanetMobiSim. Simulation, 87, 275–300.

    Article  Google Scholar 

  59. Härri, J., Filali, F., Bonnet, C., & Fiore, M. (2006). VanetMobiSim: Generating realistic mobility patterns for VANETs. In Proceedings of the 3rd International Workshop on Vehicular Ad hoc Networks (pp. 96–97). ACM.

  60. Deng, D. J., Chen, H. C., Chao, H. C., & Huang, Y. M. (2011). A collision alleviation scheme for IEEE 802.11 p VANETs. Wireless Personal Communications, 56(3), 371–383.

    Article  Google Scholar 

  61. Group, I. W., et al. (2010). IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) Specifications. IEEE Std, 802(11), 1–1076.

  62. Winkler, S., Sharma, A., & McNally, D. (2001). Perceptual video quality and blockiness metrics for multimedia streaming applications. In Proceedings of the International Symposium on Wireless Personal Multimedia Communications (pp. 547–552).

  63. Chen, Y., Wu, K., & Zhang, Q. (2015). From QoS to QoE: A tutorial on video quality assessment. IEEE Communications Surveys & Tutorials, 17(2), 1126–1165.

    Article  Google Scholar 

  64. Aguiar, E., Riker, A., Abelém, A., Cerqueira, E., & Mu, M. (2012). Video quality estimator for wireless mesh networks. In Proceedings of the 2012 IEEE 20th International Workshop on Quality of Service (p. 1). IEEE Press.

  65. Mu, M., Romaniak, P., Mauthe, A., Leszczuk, M., Janowski, L., & Cerqueira, E. (2012). Framework for the integrated video quality assessment. Multimedia Tools and Applications, 61(3), 787–817.

    Article  Google Scholar 

  66. Chikkerur, S., Sundaram, V., Reisslein, M., & Karam, L. J. (2011). Objective video quality assessment methods: A classification, review, and performance comparison. IEEE Transactions on Broadcasting, 57(2), 165–182.

    Article  Google Scholar 

  67. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  68. Graphics, M. (2009). Media Lab. Msu video quality measurement tool.

  69. REC, I. (2006). P. 800.1, Mean opinion score (MOS) terminology.

  70. Zafar, S., & Manzoor, H. (2016). Throughput and delay analysis of AODV, DSDV and DSR routing protocols in mobile ad hoc networks. International Journal of Computer Networks and Applications (IJCNA), 3(2), 1–7.

    Google Scholar 

  71. Szigeti, T., & Hattingh, C. (2004). Quality of service design overview. San Jose, CA: Cisco.

    Google Scholar 

  72. Bouras, C., Kapoulas, V., & Tsanai, E. (2015). A GPSR enhancement mechanism for routing in VANETs. In International Conference on Wired/Wireless Internet Communication (pp. 94–107). Springer.

  73. Houssaini, Z. S., Zaimi, I., Oumsis, M., & Ouatik, S. E. A. (2016). Improvement of GPSR protocol by using future position estimation of participating nodes in vehicular ad-hoc Networks. In International Conference on Wireless Networks and Mobile Communications (WINCOM) (pp. 87–94). IEEE.

  74. Hu, T., Liwang, M., Huang, L., & Tang, Y. (2015). An enhanced GPSR routing protocol based on the buffer length of nodes for the congestion problem in VANETs. In 10th International Conference on Computer Science & Education (ICCSE) (pp. 416–419). IEEE

  75. Yi, J., Adnane, A., David, S., & Parrein, B. (2011). Multipath optimized link state routing for mobile ad hoc networks. Ad Hoc Networks, 9(1), 28–47.

    Article  Google Scholar 

  76. Boushaba, A., Benabbou, A., Benabbou, R., Zahi, A., & Oumsis, M. (2016). An intelligent multipath optimized link state routing protocol for QoS and QoE enhancement of video transmission in MANETs. Computing, 98(8), 803–825.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imane Zaimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaimi, I., Houssaini, Z.S., Boushaba, A. et al. An Evaluation of Routing Protocols for Vehicular Ad-Hoc Network Considering the Video Stream. Wireless Pers Commun 98, 945–981 (2018). https://doi.org/10.1007/s11277-017-4903-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4903-y

Keywords

Navigation