Abstract
In promising application field such as Vehicular Ad hoc Networks, the ability of the driver to exchange video streams smoothly over the network regardless of his position is one of the most incentive features. However, dynamic nature of mobility and current obstacles in urban areas bring considerable challenges to routing. To give gratifying transmission performances, the vehicular networks must ensure Quality of Experience as well as keeping a tolerable Quality of Service (QoS). Furthermore, studying and comparing the efficiency of existing protocols have been challenging since each protocol is appropriate to a specific environment of application. Additionally, the lack in literature of quantitative comparison between the existing video stream requirements-based study, led us in this survey to analyze ten promising routing protocols focusing on communication challenges. Since the protocol chosen in the industrial world depends on certain metrics including video stream requirements, the paper shows also which protocols are suitable for MPEG-4 video quality by raking merits of QoS.













Similar content being viewed by others
References
Cunha, F., Villas, L., Boukerche, A., Maia, G., Viana, A., Mini, R., et al. (2016). Data communication in VANETs: Survey, applications and challenges. Ad Hoc Networks, 44, 90–103.
Daniel, A., Paul, A., Ahmad, A., & Rho, S. (2016). Cooperative intelligence of vehicles for intelligent transportation systems (ITS). Wireless Personal Communications, 87(2), 461–484.
Kumar, N., Chilamkurti, N., & Rodrigues, J. J. (2014). Learning automata-based opportunistic data aggregation and forwarding scheme for alert generation in vehicular ad hoc networks. Computer Communications, 39, 22–32.
Bekris, K. E., Tsianos, K. I., & Kavraki, L. E. (2009). Safe and distributed kinodynamic replanning for vehicular networks. Mobile Networks and Applications, 14(3), 292–308.
Gonzalez, A. J., Alcober, J., de Pozuelo, R. M., Pinyol, F., & Ghafoor, K. Z. (2011). Context-aware multimedia service composition using quality assessment. In 2011 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1–6). IEEE.
Joe, M. M., & Ramakrishnan, B. (2016). Review of vehicular ad hoc network communication models including WVANET (Web VANET) model and WVANET future research directions. Wireless Networks, 22(7), 2369–2386.
Joe, M. M., & Ramakrishnan, B. (2015). WVANET: Modelling a novel web based communication architecture for vehicular network. Wireless Personal Communications, 85(4), 1987–2001.
Tyagi, P., & Dembla, D. (2016). Performance analysis and implementation of proposed mechanism for detection and prevention of security attacks in routing protocols of vehicular ad-hoc network (VANET). Egyptian Informatics Journal, 18(2), 133–139.
Hasrouny, H., Samhat, A. E., Bassil, C., & Laouiti, A. (2017). VANet security challenges and solutions: A survey. Vehicular Communications, 7, 7–20.
Mohammed, N. H., El-Moafy, H. N., Abdel-Mageid, S. M., & Marie, M. I. (2017). Mobility management scheme based on smart buffering for vehicular networks. International Journal of Computer Networks and Applications (IJCNA), 4(2), 35–46.
Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems, 50(4), 217–241.
Xu, S., Guo, P., Xu, B., & Zhou, H. (2012). Study on qos of video communication over VANET. In Information Computing and Applications (pp. 730–738). Springer.
Dua, A., Kumar, N., & Bawa, S. (2014). A systematic review on routing protocols for vehicular ad hoc networks. Vehicular Communications, 1, 33–52.
Mohapatra, S., & Kanungo, P. (2012). Performance analysis of AODV, DSR, OLSR and DSDV routing protocols using NS2 Simulator. Procedia Engineering, 30, 69–76.
Husain, A., & Sharma, S. (2015). Simulated analysis of location and distance based routing in VANET with IEEE802. 11p. Procedia Computer Science, 57, 323–331.
Nefti, S., & Sedrati, M. (2016). PSNR and jitter analysis of routing protocols for video streaming in sparse MANET networks, using NS2 and the evalvid framework. International Journal of Computer Science and Information Security. arXiv preprint arXiv:1604.03217.
Sharef, B. T., Alsaqour, R. A., & Ismail, M. (2013). Comparative study of variant position-based VANET routing protocols. Procedia Technology, 11, 532–539.
Qadri, N. N., Fleury, M., Rofoee, B. R., Altaf, M., & Ghanbari, M. (2012). Robust P2P multimedia exchange within a VANET. Wireless Personal Communications, 63(3), 561–577.
Martinez, F. J., Fogue, M., Toh, C. K., Cano, J. C., Calafate, C. T., & Manzoni, P. (2013). Computer simulations of VANETs using realistic city topologies. Wireless Personal Communications, 69(2), 639–663.
Wang, S. Y., Wang, P. F., Li, Y. W., & Lau, L. C. (2011). Design and implementation of a more realistic radio propagation model for wireless vehicular networks over the NCTUns network simulator. In Wireless Communications and Networking Conference (WCNC) (pp. 1937–1942). IEEE.
Perkins, C. E., & Royer, E. M. (1999). Ad-hoc on-demand distance vector routing. In Proceedings of the Second IEEE Workshop on Mobile Computer Systems and Applications (p. 90). IEEE Computer Society.
Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. In ACM SIGCOMM Computer Communication Review (Vol. 24, pp. 234–244). ACM.
Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. In Mobile Computing (pp. 153–181). Springer.
Espensen, K. L., Kjeldsen, M. K., & Kristensen, L. M. (2008). Modelling and initial validation of the DYMO routing protocol for mobile ad-hoc networks. Lecture Notes in Computer Science, 5062, 152–170.
Pei, G., Gerla, M., & Chen, T. W. (2000). Fisheye state routing: A routing scheme for ad hoc wireless networks. In 2000 IEEE International Conference on Communications, ICC 2000 (Vol. 1, pp. 70–74). IEEE.
Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (pp. 243–254). ACM.
Al-Rabayah, M., & Malaney, R. (2012). A new scalable hybrid routing protocol for VANETs. IEEE Transactions on Vehicular Technology, 61(6), 2625–2635.
Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., & Viennot, L. (2001). Optimized link state routing protocol for ad hoc networks. In Proceedings IEEE International Multi Topic Conference , IEEE INMIC 2001. Technology for the 21st Century (pp. 62–68).
Zhao, J., & Cao, G. (2008). VADD: Vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 57(3), 1910–1922.
Haas, Z. J., & Pearlman, M. R. (2001). ZRP: A hybrid framework for routing in ad hoc networks. In Ad hoc Networking (pp. 221–253). Addison-Wesley Longman Publishing Co., Inc.
Nouh, M. S. A., El-ramly, S. H., Zaki, M., & Elsayed, H. A. (2016). Enhanced route discovery mechanism of ad-hoc on demand distance vector for MANET. International Journal of Computer Networks and Applications (IJCNA), 3(6), 129–138.
Sharma, S. K., & Sharma, S. (2017). Improvement over AODV considering QoS support in mobile ad-hoc networks. International Journal of Computer Networks and Applications (IJCNA), 4(2), 47–61.
Namboodiri, V., Agarwal, M., & Gao, L. (2004). A study on the feasibility of mobile gateways for vehicular ad-hoc networks. In Proceedings of the 1st ACM International Workshop on Vehicular Ad hoc Networks (pp. 66–75). ACM.
Billington, J., & Yuan, C. (2009). On modelling and analysing the dynamic MANET on-demand (DYMO) routing protocol. Trans. Petri nets and other models of concurrency (Vol. 3, pp. 98–126). Berlin: Springer.
Walikar, G. A., & Biradar, R. C. (2017). A survey on hybrid routing mechanisms in mobile ad hoc networks. Journal of Network and Computer Applications, 77, 48–63.
Ghafoor, K. Z., Lloret, J., Bakar, K. A., Sadiq, A. S., & Mussa, S. A. B. (2013). Beaconing approaches in vehicular ad hoc networks: A survey. Wireless Personal Communications, 73(3), 885–912.
Gonçalves Filho, J., Patel, A., Batista, B. L. A., & Celestino, J. (2016). A systematic technical survey of DTN and VDTN routing protocols. Computer Standards & Interfaces, 48, 139–159.
Mageid, S. A. (2017). Connectivity based positioning system for underground vehicular ad hoc networks. International Journal of Computer Networks and Applications (IJCNA), 4(1), 1–14.
Ghafoor, K. Z., Lloret, J., Sadiq, A. S., & Mohammed, M. A. (2015). Improved geographical routing in vehicular ad hoc networks. Wireless Personal Communications, 80(2), 785–804.
Mageid, S. A. (2016). Self-correcting localization scheme for vehicle to vehicle communication. International Journal of Computer Networks and Applications (IJCNA), 3(5), 95–107.
Gupta, N., Prakash, A., & Tripathi, R. (2015). Medium access control protocols for safety applications in vehicular ad-hoc network: A classification and comprehensive survey. Vehicular Communications, 2(4), 223–237.
Zeng, X., Tao, C., & Chen, Z. (2009). The application of DSRC technology in intelligent transportation system. In IET International Communication Conference on Wireless Mobile and Computing (CCWMC 2009) (pp. 265–268).
Spaho, E., Ikeda, M., Barolli, L., & Xhafa, F. (2013). Performance comparison of OLSR and AODV protocols in a VANET crossroad scenario. In Information Technology Convergence (pp. 37–45). Springer.
Ali, F., Shaikh, F. K., Ansari, A. Q., Mahoto, N. A., & Felemban, E. (2015). Comparative analysis of VANET routing protocols: On road side unit placement strategies. Wireless Personal Communications, 85(2), 393–406.
Xu, S., Guo, P., Xu, B., & Zhou, H. (2013). QoS evaluation of VANET routing protocols. Journal of Networks, 8(1), 132–139.
Rodrigues, D., Cerqueira, E., & Monteiro, E. (2008). Quality of service and quality of experience in video streaming. In Proceedings of the International Workshop on Traffic Management and Traffic Engineering for the Future Internet (FITraMEn2008), EuroNF NoE, Porto, Portugal (pp. 11–12).
Xie, F., Hua, K., Wang, W., Ho, Y. H., et al. (2007). Performance study of live video streaming over highway vehicular ad hoc networks. In 2007 IEEE 66th Conference on Vehicular Technology, 2007. VTC-2007 Fall (pp. 2121–2125). IEEE.
Xu, S. (2012). Simulated study on video communication over VANET. In World Automation Congress (WAC). IEEE.
The network simulator ns-2. http://www.isi.edu/nsnam/ns.
Harri, J., & Fiore, M. (2006). VanetMobiSim: Vehicular ad hoc network mobility extension to the CanuMobiSim framework. Institut Eurécom Department of Mobile Communications, 6904, 1–19.
De Felice, M., Cerqueira, E., Melo, A., Gerla, M., Cuomo, F., & Baiocchi, A. (2015). A distributed beaconless routing protocol for real-time video dissemination in multimedia VANETs. Computer Communications, 58, 40–52.
Park, J. S., Lee, U., & Gerla, M. (2010). Vehicular communications: Emergency video streams and network coding. Journal of Internet Services and Applications, 1(1), 57–68.
Wang, H., Divakaran, A., Vetro, A., Chang, S. F., & Sun, H. (2003). Survey of compressed-domain features used in audio-visual indexing and analysis. Journal of Visual Communication and Image Representation, 14(2), 150–183.
Fitzek, F. H., & Reisslein, M. (2001). MPEG-4 and H. 263 video traces for network performance evaluation. IEEE Network, 15(6), 40–54.
Xu, F., & Zhang, Y. J. (2006). Evaluation and comparison of texture descriptors proposed in MPEG-7. Journal of Visual Communication and Image Representation, 17(4), 701–716.
Ziviani, A., Wolfinger, B. E., De Rezende, J. F., Duarte, O. C. M., & Fdida, S. (2005). Joint adoption of QoS schemes for MPEG streams. Multimedia Tools and Applications, 26(1), 59–80.
Rahman, M. H., Morshed, M. M., & Rahman, M. U. (2014). Realistic vehicular mobility impact of FTM, IDM, IDM-IM and IDM-LC on VANETs. International Journal of Computer Applications, 90(11), 5–12.
Härri, J., Fiore, M., Filali, F., & Bonnet, C. (2009). Vehicular mobility simulation with VanetMobiSim. Simulation, 87, 275–300.
Härri, J., Filali, F., Bonnet, C., & Fiore, M. (2006). VanetMobiSim: Generating realistic mobility patterns for VANETs. In Proceedings of the 3rd International Workshop on Vehicular Ad hoc Networks (pp. 96–97). ACM.
Deng, D. J., Chen, H. C., Chao, H. C., & Huang, Y. M. (2011). A collision alleviation scheme for IEEE 802.11 p VANETs. Wireless Personal Communications, 56(3), 371–383.
Group, I. W., et al. (2010). IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) Specifications. IEEE Std, 802(11), 1–1076.
Winkler, S., Sharma, A., & McNally, D. (2001). Perceptual video quality and blockiness metrics for multimedia streaming applications. In Proceedings of the International Symposium on Wireless Personal Multimedia Communications (pp. 547–552).
Chen, Y., Wu, K., & Zhang, Q. (2015). From QoS to QoE: A tutorial on video quality assessment. IEEE Communications Surveys & Tutorials, 17(2), 1126–1165.
Aguiar, E., Riker, A., Abelém, A., Cerqueira, E., & Mu, M. (2012). Video quality estimator for wireless mesh networks. In Proceedings of the 2012 IEEE 20th International Workshop on Quality of Service (p. 1). IEEE Press.
Mu, M., Romaniak, P., Mauthe, A., Leszczuk, M., Janowski, L., & Cerqueira, E. (2012). Framework for the integrated video quality assessment. Multimedia Tools and Applications, 61(3), 787–817.
Chikkerur, S., Sundaram, V., Reisslein, M., & Karam, L. J. (2011). Objective video quality assessment methods: A classification, review, and performance comparison. IEEE Transactions on Broadcasting, 57(2), 165–182.
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.
Graphics, M. (2009). Media Lab. Msu video quality measurement tool.
REC, I. (2006). P. 800.1, Mean opinion score (MOS) terminology.
Zafar, S., & Manzoor, H. (2016). Throughput and delay analysis of AODV, DSDV and DSR routing protocols in mobile ad hoc networks. International Journal of Computer Networks and Applications (IJCNA), 3(2), 1–7.
Szigeti, T., & Hattingh, C. (2004). Quality of service design overview. San Jose, CA: Cisco.
Bouras, C., Kapoulas, V., & Tsanai, E. (2015). A GPSR enhancement mechanism for routing in VANETs. In International Conference on Wired/Wireless Internet Communication (pp. 94–107). Springer.
Houssaini, Z. S., Zaimi, I., Oumsis, M., & Ouatik, S. E. A. (2016). Improvement of GPSR protocol by using future position estimation of participating nodes in vehicular ad-hoc Networks. In International Conference on Wireless Networks and Mobile Communications (WINCOM) (pp. 87–94). IEEE.
Hu, T., Liwang, M., Huang, L., & Tang, Y. (2015). An enhanced GPSR routing protocol based on the buffer length of nodes for the congestion problem in VANETs. In 10th International Conference on Computer Science & Education (ICCSE) (pp. 416–419). IEEE
Yi, J., Adnane, A., David, S., & Parrein, B. (2011). Multipath optimized link state routing for mobile ad hoc networks. Ad Hoc Networks, 9(1), 28–47.
Boushaba, A., Benabbou, A., Benabbou, R., Zahi, A., & Oumsis, M. (2016). An intelligent multipath optimized link state routing protocol for QoS and QoE enhancement of video transmission in MANETs. Computing, 98(8), 803–825.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zaimi, I., Houssaini, Z.S., Boushaba, A. et al. An Evaluation of Routing Protocols for Vehicular Ad-Hoc Network Considering the Video Stream. Wireless Pers Commun 98, 945–981 (2018). https://doi.org/10.1007/s11277-017-4903-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-017-4903-y