Abstract
Device-to-device (D2D) communication is a new enabling technology for the next generation cellular networks. In D2D communications, two or more user equipments directly communicate with each other with a very restricted involvement of the evolved Node B. The main objective is to realize high data rates, low power consumption, low delays and improve the overall spectral efficiency. In addition to these advantages, D2D communications poses several research challenges in terms of interference and power control, and whether or not D2D communication should be used in a given environment. In order to solve these issues, significant amount of research and development work has been done by both industry and academia, which is comprehensively covered in this survey article. Firstly, we discuss the use case scenarios of D2D communication by classifying its applications into two types: commercial and public safety services. This is followed by an in-depth discussion on the state-of-the-art solutions proposed in various research studies addressing different issues associated with each classification. While discussing a large number of previous works, we highlight some of the open research issues and challenges in D2D communications.











Similar content being viewed by others
References
UMTS Forum. (2011). Mobile traffic forecasts 20102020, Report No. 44. http://www.umts-forum.org/component/option,com_docman/task,cat_view/gid,485/Itemid,213/.
OVUM Plc. (2009). Mobile Broadband Users and Revenues Forecast Pack to 2014.
Index, Cisco Visual Networking. (2015). Global mobile data traffic forecast update, 2014–2019. San Jose, CA: Cisco.
IEEE Wireless Communications, (2015). Cooperative device-to-device communications in cellular networks. 22(3), 124–129. doi:10.1109/MWC.2015.7143335.
Mumtaz, S., & Rodriguez, J. (Eds.) (2014). Smart device to smart device communication. Springer. ISBN: 978-3-319-04963-2.
Doppler, K., Rinne, M., Wijting, C., Riberio, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49.
Fodor, G., Dahlman, E., Mildh, G., Parkvall, S., Reider, N., Miklos, G., et al. (2012). Design aspects of network assisted device-to-device communications. IEEE Communications Magazine, 50(12), 170–177.
Janis, P., Chia-Hao, Y., Doppler, K., Ribeiro, C., Wijting, C., Hugl, K., et al. (2009). Device-to-device communication underlaying cellular communications systems. International Journal of Communications, Network and System Sciences, 2009, 169–178.
Liu, J., Kato, N., Ma, J., & Kadowaki, N. (2014). Device-to-device communication in LTE-advanced networks: A survey. IEEE Communications Surveys and Tutorials, 17(4), 1923–1940. doi:10.1109/COMST.2014.2375934.
Asadi, A., Wang, A. Q., & Mancuso, V. (2014). A survey on device-to-device communication in cellular networks. IEEE Communications Surveys and Tutorials, 16(4), 1801–1819.
Mach, P., Becvar, Z., & Vanek, T. (2015). In-band device-to-device communication in OFDMA cellular networks: a survey and challenges. IEEE Communications Surveys and Tutorials, 17(4), 1885–1922. doi:10.1109/COMST.2015.2447036.
Qualcomm. (2013). LTE direct overview. Available online at http://www.qualcomm.com/media/documents/lte-direct-whitepaper.
Pyattaev, A., Johnsson, K., Andreev, S., & Koucheryavy, Y. (2013). 3GPP LTE traffic offloading onto WiFi Direct. In IEEE wireless communications and networking conference workshops (WCNCW), 2013, Shanghai (pp. 135–140). doi:10.1109/WCNCW.2013.6533328
Pyattaev, A., Johnsson, K., Andreev, S., & Koucheryavy, Y. (2013). Proximity-based data offloading via network assisted device-to-device communications. In IEEE 77th dresden on vehicular technology conference (VTC Spring), 2013 (pp. 1–5). doi:10.1109/VTCSpring.2013.6692723.
Andreev, S., Galinina, O., Pyattaev, A., Johnsson, K., & Koucheryavy, Y. (2015). Analyzing assisted offloading of cellular user sessions onto D2D links in unlicensed bands. IEEE Journal on Selected Areas in Communications, 33(1), 67–80. doi:10.1109/JSAC.2014.2369616.
Pyattaev, A., Johnsson, K., Surak, A., Florea, R., Andreev, S., & Koucheryavy, Y. (2014). Network-assisted D2D communications: Implementing a technology prototype for cellular traffic offloading. In IEEE wireless communications and networking conference (WCNC), 2014, Istanbul (pp. 3266–3271). doi:10.1109/WCNC.2014.6953070.
Andreev, S., Pyattaev, A., Johnsson, K., Galinina, O., & Koucheryavy, Y. (2014). Cellular traffic offloading onto network-assisted device-to-device connections. IEEE Communications Magazine, 52(4), 20–31. doi:10.1109/MCOM.2014.6807943.
Ding, G., Wang, J., Wu, Q., Yao, Y. D., Song, F., & Tsiftsis, T. A. (2016). Cellular-base-station-assisted device-to-device communications in TV white space. IEEE Journal on Selected Areas in Communications, 34(1), 107–121. doi:10.1109/JSAC.2015.2452532.
Zhang, R., et al. (2015). LTE-unlicensed: The future of spectrum aggregation for cellular networks. IEEE Wireless Communications, 22(3), 15059.
3GPP, RP-140808: Review of regulatory requirements for unlicensed spectrum, Alcatel-Lucent, Alcatel-Lucent Shanghai Bell, Ericsson, Huawei, HiSilicon, IAESI, LG, Nokia, NSN, Qualcomm, NTT Docomo, Technical report, 2014.
Wu, Y., et al. (2016). Device-to-device meets LTE-unlicensed. IEEE Communications Magazine, 54(5), 154–159. doi:10.1109/MCOM.2016.7470950.
Lee, D. H., et al. (2014). Two-stage semidistributed resource management for device-to-device communication in cellular networks. IEEE Transactions on Wireless Communications, 13(4), 190820.
Wang, F., Zhou, B., Jing, X., & Wang, H. (2011). An efficient retransmission scheme for data sharing in D2D assisted cellular networks. In Mobile congress (GMC), 2011. Global, Shanghai (pp. 1–6). doi:10.1109/GMC.2011.6103910.
Janis, P., Koivunen, V., Ribeiro, C., & Korhonen, J. (2009). Interference aware resource allocation for device-to-device radio underlaying cellular networks. In Proceedings of the IEEE VTC 2009-Spring, Barcelona, Spain, April 2009 (pp. 15).
Xu, S., Wang, H., Chen, T., Huang, Q., & Peng, T. (2010). Effective interference cancellation scheme for device-to-device communication underlaying cellular networks, In Proceedings of the IEEE VTC-Fall (pp. 15).
Xu, S., Wang, H., & Chen, T. (2012). Effective interference cancellation mechanisms for D2D communication in multi-cell cellular networks. In IEEE vehicular technology conference-fall.
Wang, H., & Chu, X. (2012). Distance-constrained resource-sharing criteria for device-to-device communications underlaying cellular networks. Electronics Letters, 48(9), 528–530.
3GPP TS 36.213 V8.2.0: E-UTRA physical layer procedures.
Min, H., Lee, J., Park, S., & Hong, D. (2011). Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks. IEEE Transactions on Wireless Communications, 10(12), 39954000.
Chen, X., Chen, L., Zeng, M., Zhang, X., & Yang, D. (2012). Downlink resource allocation for device-to-device communication underlaying cellular networks. In PIMRC.
Ni, M., Zheng, L., Tong, F., Pan, J., & Cai, L. (2015). A geometrical-based throughput bound analysis for device-to-device communications in cellular networks. IEEE Journal on Selected Areas in Communications, 33(1), 100110.
Ni, M., Zheng, L., Tong, F., Pan, J., & Cai, L. (2015). A geometrical-based throughput analysis for device-to-device communications in a sector-partitioned cell. IEEE Transactions on Wireless Communications, 14(4), 22322244.
Ni, M., Pan, J., & Cai, L. (2014). Power emission density-based interference analysis for random wireless networks. In Proceedings of the IEEE ICC (pp. 440–445).
Pei, Y., & Liang, Y.-C. (2013). Resource allocation for device-to-device communication overlaying two-way cellular networks. IEEE Transactions on Wireless Communications, 12(7), 36113621.
Xu, C., Song, L., Han, Z., Li, D., & Jiao, B. (2012). Resource allocation using a reverse iterative combinatorial auction for device-to-device underlay cellular networks. In Proceedings of the IEEE GLOBECOM (pp. 4542–4547).
Xu, C., Song, L., Han, Z., Zhao, Q., Wang, X., Cheng, X., et al. (2012). Efficiency resource allocation for device-to-device underlay communication systems: A reverse iterative combinatorial auction based approach. IEEE Journal On Selected Areas In Communications/Supplement, 31, 348–358.
WINNER II D1.1.2, WINNER II channel models, https://www.istwinner.org/deliverables.html, September 2007.
Yanli, Xu, Liu, Yong, & Li, Dong. (2015). Resource management for interference mitigation in device-to-device communication. IET Communications, 9(9), 1199–1207.
Ye, Qiaoyang, Al-Shalash, Mazin, Caramanis, Constantine, & Andrews, Jeffrey G. (2015). Distributed resource allocation in device-to-device enhanced cellular networks. IEEE Transactions on Communications, 63(2), 441–454.
Razaviyayn, M., Luo, Z.-Q., Tseng, P., & Pang, J.-S. (2011). A Stackelberg game approach to distributed spectrum management. Mathematical Programming, 129(2), 197224.
Kaufman, B., Lilleberg, J., & Aazhang, B. (2013). Spectrum sharing scheme between cellular users and ad-hoc device-to-device users. IEEE Transactions on Wireless Communications, 12(3), 10381049.
Johnson, D. B., Maltz, D. A., & Broch, J. (2001). DSR: The dynamic source routing protocol for multi-hop wireless ad hoc networks. In C. E. Perkins (Ed.), Ad Hoc Network (pp. 139–172). Boston: Addison-Wesley.
Cicalo, S., Tralli, V., & Perez-Neira, A. I. (2011). Centralized vs distributed resource allocation in multi-cell OFDMA systems. In IEEE 73rd vehicular technology conference (VTC Spring), 2011, Yokohama (pp. 1–6). doi:10.1109/VETECS.2011.5956553.
Wu, Y., Wang, J., Qian, L., & Schober, R. (2015). Optimal power control for energy efficient D2D communication and its distributed implementation. IEEE Communications Letters, 19(5), 815–818. doi:10.1109/LCOMM.2015.2407871.
Gu, J., Bae, S. J., Choi, B. G., & Chung, M. Y. (2011). Dynamic power control mechanism for interference coordination of device-to-device communication in cellular networks, In 3rd International conference on ubiquitous and future networks (ICUFN) (pp. 71–75).
Cheng, Yongsheng, Gu, Yuantao, & Lin, Xiaokang. (2013). Combined power control and link selection in device to-device enabled cellular systems. IET Communications, 7(12), 1221–1230.
Berggren, F., Jantti, R., & Seong-Lyun, K. (2001). A generalized algorithm for constrained power control with capability of temporary removal. IEEE Transactions on Vehicular Technology, 50(6), 1604–1612.
Fodor, G., Della Penda, D., Belleschi, M., Johansson, M., & Abrardo, A. (2013). A comparative study of power control approaches for device-to-device communications. In IEEE International Conference on Communications (ICC) (pp. 6008–6013).
Yu, C. H., Tirkkonen, O., Doppler, K., & Ribeiro, C. (2009). Power optimization of device-to-device communication underlaying cellular communication. In 2009 IEEE international conference on communications (pp. 1–5). doi:10.1109/ICC.2009.5199353.
Xing, H., & Hakola, S. (2010). The investigation of power control schemes for a device-to-device communication integrated into OFDMA cellular system. In IEEE 21st international symposium on personal indoor and mobile radio communications (PIMRC), 2010.
Zhou, Z., Dong, M., Ota, K., Shi, R., Liu, Z., & Sato, T. (2015). Game-theoretic approach to energy-efficient resource allocation in device-to-device underlay communications. IET Communications., 9(3), 375–385. doi:10.1049/iet-com.2014.0337.
[11] Wang, F., Xu, C., Song, L., Han, Z., & Zhang, B. (2012). Energy efficient radio resource and power allocation for device-to-device communication underlaying cellular networks. In International conference on wireless communications and signal processing (WCSP), 2012, October 2012.
Zhu, Daohua, Wang, Jiaheng, & Swindlehurst, A. L. (2014). Downlink resource reuse for device-to-device communications underlaying cellular networks. IEEE Signal Processing Letters, 21(5), 531–54.
Janis, P., Chia-Hao, Y., Doppler, K., Ribeiro, C., Wijting, C., Hugl, K., et al. (2009). Device-to-device communication underlaying cellular communications systems. International Journal of Communications, Network and System Sciences, 2(03), 169–178.
Janis, P., Koivunen, V., Cassio, R., Korhonen, J., Doppler, K., & Hugl, K. (2009). Interference-aware resource allocation for device-to-device radio underlaying cellular networks. In IEEE Vehicular Technology Conference (pp. 1–5). doi:10.1109/VETECS.2009.5073611.
Gu, J., Bae, S. J., Hasan, S. F., & Chung, M. Y. (2013). A combined power control and resource allocation scheme for D2D communication underlaying an LTE-advanced system. IEICE Transactions on Communications, E96–B(10), 2683–2692.
Myung, H. G., Lim, J., & Goodman, D. J. (2006). Single carrier FDMA for uplink wireless transmission. IEEE Vehicular Technology Magazine, 1(3), 3038.
Syed, T. S., Gu, J., Hasan, S. F., & Chung, M. Y. (2015). SC-FDMA based resource allocation and power control scheme for D2D-communication using LTE-A uplink resource. EURASIP Journal on Wireless Communications and Networking, 2015(1), 137.
Gu, J., Yoon, H.-W., Lee, J., Bae, S. J., Chung, M. Y. (2015). A resource allocation scheme for device-to-device communications using LTE-A uplink resources. Pervasive and Mobile Computing, 18, 104–117. ISSN: 1574-1192.
Yu, G., Xu, L., Feng, D., Yin, R., Li, G. Y., & Jiang, Y. (2014). Joint mode selection and resource allocation for device-to-device communications. IEEE Transactions on Communications, 62(11), 3814–3824.
Zhu, K., & Hossain, E. (2015). Joint mode selection and spectrum partitioning for device-to-device communication: A dynamic Stackelberg game. IEEE Transactions on Wireless Communications, 14(3), 14061420.
Wang, Q., Wang, W., Jin, S., Zhu, H., & Zhang, N. T. (2014). Mode selection for D2D communication underlaying a cellular network with shared relays. In 6th International conference on wireless communications and signal processing (WCSP) (pp. 1–6). October 23–25, 2014. doi:10.1109/WCSP.2014.6992132
Li, Y., Jin, D., Gao, F., & Zeng, L. (2014). Joint optimization for resource allocation and mode selection in device-to-device communication underlaying cellular networks. In IEEE international conference on communications (ICC), 2014 (pp. 2245–2250). June 10–14, 2014. doi:10.1109/ICC.2014.6883657.
Wen, S., Zhu, X., Zhang, X., & Yang, D. (2013). QoS-aware mode selection and resource allocation scheme for device-to-device (D2D) communication in cellular networks, In IEEE international conference on communication work, ICC, 2013 (pp. 101–105).
Lei, L., Shen, X., Dohler, M., Lin, C., & Zhong, Z. (2014). Queuing models with applications to mode selection in device-to-device communications underlaying cellular networks. IEEE Transactions on Wireless Communications, 13(12), 6697–6715. doi:10.1109/TWC.2014.2335734.
Liu, J., Kawamoto, Y., Nishiyama, H., Kato, N., & Kadowaki, N. (2014). Device-to-device communications achieve efficient load balancing in LTE-advanced networks. IEEE Wireless Communications, 21(2), 57–65. doi:10.1109/MWC.2014.6812292.
Wu, X., Tavildar, S., Shakkottai, S., Richardson, T., Junyi, Li., Laroia, R., Jovicic, A. (2010). FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks. In 48th Annual Allerton conference on communication, control, and computing (Allerton), 2010 (pp. 514-521) 29 September, 2010–October 1, 2010. doi:10.1109/ALLERTON.2010.5706950.
Wu, X., Tavildar, S., Shakkottai, S., Richardson, T., Li, J., Laroia, R., et al. (2013). FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks. IEEE/ACM Transactions on Networking, 21(4), 1215–1228. doi:10.1109/TNET.2013.2264633.
Mehlfhrer, C., Colom Ikuno, J., Simko, M., Schwarz, S., Wrulich, M., & Rupp, M. (2011). The Vienna LTE simulators-Enabling reproducibility in wireless communications research. EURASIP Journal on Advances in Signal Processing, 2011, 1–13.
Choi, B.-G., Kim, J. S., Shin, J., Park, A.-S., & Chung, M. Y. (2012). Development of a system-level simulator for evaluating performance of device-to-device communication underlaying LTE-advanced networks. In International conference on computational intelligence, modelling and simulation.
Delivering public safety communications with LTE, 3GPP white paper (Online). Available: http://3gpp.org/Public-Safety
Fodor, G., Dahlman, E., Mildh, G., Parkvall, S., Reider, N., Mikls, G., et al. (2012). Design aspects of network assisted device-to-device communications. IEEE Communications Magazine, 50(3), 170–177.
Chao, S. L., Lee, H. Y., Chou, C. C., & Wei, H. Y. (2013). Bio-inspired proximity discovery and synchronization for D2D communications. IEEE Communications Letters, 17(12), 23002303.
Huang, P. K., Qi, E., Park, M., & Stephens, A. (2013). Energy efficient and scalable device-to-device discovery protocol with fast discovery. IEEE international work on internet-of-things networks control (IoT-NC), 2013 (p. 19).
Hong, J., Park, S., & Choi, S. (2014). Neighbor device-assisted beacon collision detection scheme for D2D discovery. In International conference on information and communication technology convergence (ICTC), 2014, (pp. 369-370). October 22–24, 2014. doi:10.1109/ICTC.2014.6983157
3GPP TS 23.303 V13.0.0. Technical specification group services and system aspects; Proximity-based services (ProSe).
Prasad, A., Kunz, A., Velev, G., Samdanis, K., & Song, J. S. (2014). Energy-efficient D2D discovery for proximity services in 3GPP LTE-advanced networks: ProSe discovery mechanisms. IEEE Vehicular Technology Magazine, 9(4), 40–50. doi:10.1109/MVT.2014.2360652.
Kim, J., Yang, J. R., & Kim, D. I. (2011). Optimal relaying strategy for UE relays. In 17th Asia-Pacific conference communication APCC 2011, October (pp. 192–196).
Munir, D., Gu, J., & Chung, M. Y. (2014). Selection of UE relay considering QoS class for public safety services. In 20th Asia-Pacific conference communication on LTE-A network, APCC.
Munir, D., Gu, J., Hasan, S. F., & Chung, M. Y. (2015). Reliable cooperative scheme for public safety services in LTE-A networks. In Transactions on emerging telecommunications technologies. December 2015. doi:10.1002/ett.3008.
3GPP TSG-RAN WG1 (R1-152778), Discussions on Relay UE selection and discovery
3GPP TSG-RAN WG1 (R1-153414), Discussions on Relay UE selection and discovery
www.urgentcomm.com Article ’700MHz LTE support’ (http://urgentcomm.com/networks_and_systems/news/700-mhz-lte-support-20090611)
3GPP TSG RAN WG4 Overview of 700 MHz band in the US.
Doumi, T., Dolan, M. F., Tatesh, S., & Casati, A. (2013). LTE for public safety networks. IEEE Communications Magazine, 51, 106–112.
Access, Evolved Universal Terrestrial Radio. User Equipment (UE) radio transmission and reception, 3GPP Std. TS 36.101.
3GPP RP-120362, Public Safety Broadband High Power UE for Band 14 (B14) for Region 2.
LRM, REPORT ITU-R M . 2014-1 Digital land mobile systems for dispatch traffic, 2014.
3GPP TR 22.803, 3GPP TR 22.803 v 12.2.0. (2010). Feasibility study for proximity services (ProSe). 1(9). 2010.
3GPP TS 22.468, 3GPP TS 22.468 V13.0.0 Group Communication System Enablers for LTE (2014-12).
3GPP TS 23.468, 3GPP TS 23.468 V13.1.0 Group Communication System Enablers for LTE (GCSE_LTE); Stage 2 (2015-06).
3GPP TS 23.246, 3GPP TS 23.246 Multimedia broadcastmulticast service (MBMS), Architecture and functional description.
3GPP TS 23.401, 3GPP TS 23.401 General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access.
Nishiyama, H., Ito, M., & Kato, N. (2014). Relay-by-smartphone: Realizing multihop device-to-device communications. IEEE Communications Magazine, 52(4), 5665.
Pelusi, L., Passarella, A., & Conti, M. (2006). Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine, 44(11), 134141.
Fall, K., & Farrell, S. (2008). DTN: An architectural retrospective. IEEE Journal on Selected Areas in Communications, 26(5), 828836.
Sakano, T., Fadlullah, Z., Ngo, T., Nishiyama, H., Nakazawa, M., Adachi, F., et al. (2013). Disaster-resilient networking: A new vision based on movable and deployable resource units. IEEE Network, 27(4), 4046.
SP-150051—Work Item Description Study on LTE support for V2X services.
3GPP TR 36.885 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on LTE-based V2X Services; (Release 14)
Vanganuru, K., & Ferrante, S., & Sternberg, G. (2012). System capacity and coverage of a cellular network with D2D mobile relays. In IEEE Military Communications Conference.
Saund, S., & Lambert, P. A. (2013). Proximity based games for mobile communication devices. US Patent: Patent Number: US8616975 B1, 31 December, 2013.
Peng, B., Peng, T., Liu, Z., Yang, Y., & Hu, C. (2013). Cluster-based multicast transmission for device-to-device (D2D) communication. In VTC Fall.
Kim, J., & Lee, H. (2015). Geographical proximity based target-group formation algorithm for D2D advertisement dissemination. In IEEE international conference on pervasive computing and communication workshops (PerCom Workshops), 2015 (pp. 272–275). March 23–27, 2015. doi:10.1109/PERCOMW.2015.7134045.
Study on architecture enhancements to support proximity services (ProSe) (Release 12), Sophia-Antipolis, France, 3GPP TR 23.703 v. 1.0.0, Dec. 2013
Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.
Yeh, S.-P., Talwar, S., Wu, G., Himayat, N., & Johnsson, K. (2011). Capacity and coverage enhancement in heterogeneous networks. IEEE Wireless Communications, 18(3), 32–38.
Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.
Laya, A., Wang, Kun, Widaa, A. A., Alonso-Zarate, J., Markendahl, J., & Alonso, L. (2014). Device-to-device communications and small cells: Enabling spectrum reuse for dense networks. IEEE Wireless Communications, 21(4), 98–105. doi:10.1109/MWC.2014.6882301.
Choi, S. K., Kim, W. J., Lee, H. S., & Kim, D. I. (2013). Interference forwarding for D2D based heterogeneous cellular networks. In IEEE/CIC international conference on communications in China (ICCC), 2013, pp. 130–134, Augest 12–14, 2013. doi:10.1109/ICCChina.2013.6671102
Sathya, V., Ramamurthy, A., Kumar., S. S., & Tamma, B. R. (2016). On improving SINR in LTE HetNets with D2D relays. Computer Communications, 83(1), pp. 27–44. ISSN: 0140-3664.
Sui, Y., Vihrl, J., Papadogiannis, A., Sternad, M., & Svensson, T. (2013). Moving cells: A promising solution to boost performance for vehicular users. IEEE Communications Magazine, 51, 6268. doi:10.1109/MCOM.2013.6525596.
Munir, D., Shah, S. T., Lee, W. Jin, H., Syed F., & Chung, M. Y. (2016). Selection of relay UE with energy harvesting capabilities in public safety environment. In Proceedings of the 30th international conference on information networking (ICOIN ) 2016, (p. 6).
Shah, S. T., Choi, K. W., Hasan, S. F., & Chung, M. Y. (2016). Energy harvesting and information processing in two-way multiplicative relay networks. In Electronics Letters, 52(9), 751–753. doi:10.1049/el.2015.3682.
Shah, S. T., Munir, D., Chung, M. Y., & Choi, K. W. (2016). Information processing and wireless energy harvesting in two-way amplify-and-forward relay networks. In IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing (pp. 1–5). doi:10.1109/VTCSpring.2016.7504290.
Shah, Syed Tariq, Choi, Kae Won, Hasan, Syed Faraz, & Chung, Min Young. (2016). Throughput analysis of two-way relay networks with wireless energy harvesting capabilities. Ad Hoc Networks, 53(15), 123–131. doi:10.1016/j.adhoc.2016.09.024.
Yilmaz, O. N. C. et al. (2014). Smart mobility management for D2D communications in 5G networks. In Wireless communications and networking conference workshops (WCNCW), 2014 IEEE, Istanbul (pp. 219–223). doi:10.1109/WCNCW.2014.6934889.
Alam, M., Yang, D., Rodriguez, J., & Abd-Alhameed, R. (2014). Secure device-to-device communication in LTE-A. IEEE Communications Magazine, 52(4), 66–73. doi:10.1109/MCOM.2014.6807948.
Simulcraft Inc., Republic of Seychelles (Online). Available: http://www.omnetpp.org.
NS-3 Consortium (Online). Available: http://www.nsnam.org/.
Riverbed Technology, USA (Online). Available: http://www.opnet.com/.
Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107. doi:10.1109/MCOM.2011.5783993.
Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. In IEEE Access, 1, 335–349. doi:10.1109/ACCESS.2013.2260813.
Qiao, J., Shen, X., Mark, J., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine, 53(1), 209–215. doi:10.1109/MCOM.2015.7010536.
Acknowledgements
This work has been supported by the New Zealand’s Ministry of Business, Innovation and Employment (MBIE) under the Global Strategic Research Partnerships Fund (3000027323), also known as the Catalyst Fund, 2016–2017.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shah, S.T., Hasan, S.F., Seet, BC. et al. Device-to-Device Communications: A Contemporary Survey. Wireless Pers Commun 98, 1247–1284 (2018). https://doi.org/10.1007/s11277-017-4918-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-017-4918-4