Skip to main content
Log in

Modified Iterative Decoding Algorithm for Polar Code Using Maximum Likelihood Estimation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The key challenges in real time voice communication in long term evolution mobile are reduction in complexity and latency. Efficient encoding and decoding algorithms can cater to these. The implementation of such polar code based efficient algorithms is proposed in this paper. The overall latency of 3.8 ms is needed to process 8 bit block length. The novel sub-matrix near to identity matrix is presented. This resulted into minimization of loops among least reliable bits due to iterated parity check matrix. Look-up table based memory mapping is used in encoder to reduce latency while Euclidian decoding technique is used in decoder. The number of iterations is reduced by 50%. The experimentation is performed with additive white Gaussian noise and QPSK modulation. The proposed modified iterative decoding algorithm requires SNR of 5.5 dB and 192 computations for targeted bit error rate of 10−4. The second proposed method needs 9 dB, 2 iterations for 384 computations. The penalty paid is quantization error of 0.63% due to restricting computations to fourth order series of hyperbolic function with same 8 bit block length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sasoglu, E. (2011). Polarization and polar codes. Hanover, MA: Now Publishers Inc.

    MATH  Google Scholar 

  2. Proakis, J. G. (2014). Digital communications (5th ed.). New York: McGraw-Hill Education.

    MATH  Google Scholar 

  3. Lathi, B. P., & Ding, Z. (2011). Modern digital and analog communication systems (4th ed.). Oxford: Oxford University Press.

    Google Scholar 

  4. Chen, G. T., Zhang, Z., Zhong, C., & Zhang, L. (2016). A low complexity encoding algorithm for systematic polar codes. IEEE Communications Letters, 20(7), 1277–1280.

    Google Scholar 

  5. Li, Y., Liu, R., & Wang, R. (2016). A low-complexity SNR estimation algorithm based on frozen bits of polar codes. IEEE Communications Letters, 20(12), 2354–2357.

    Article  Google Scholar 

  6. Chen, K., Li, B., Shen, H., et al. (2016). Reduce the complexity of list decoding of polar codes by tree-pruning. IEEE Communications Letters, 20(2), 204–207.

    Article  Google Scholar 

  7. Sarkis, G., Tal, I., Giard, P., Vardy, A., et al. (2016). Flexible and low-complexity encoding and decoding of systematic polar codes. IEEE Transactions on Communications, 64(7), 2732–2745.

    Article  Google Scholar 

  8. Fan, Y., Xia, C., Chen, J., et al. (2016). A low-latency list successive-cancellation decoding implementation for polar codes. IEEE Journal on Selected Areas in Communications, 34(2), 303–317.

    Article  Google Scholar 

  9. Vangala, H., Hong, Y., & Viterbo, E. (2016). Efficient algorithms for systematic polar encoding. IEEE Communications Letters, 20(1), 17–20.

    Article  Google Scholar 

  10. Hooshmand, R., Aref, M. R., & Eghlidos, T. (2015). Secret key cryptosystem based on non-systematic polar codes. Wireless Pearson Communications, 84(2), 1345–1373.

    Article  Google Scholar 

  11. Niu, Y., Li, Y., Jin, D., et al. (2015). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks, 21(8), 2657–2676.

    Article  Google Scholar 

  12. Yang, W., Zhang, L., Yang, Z., et al. (2015). A unified design of channel coding for LTE uplink control information. Wireless Networks, 21(5), 1661–1667.

    Article  MathSciNet  Google Scholar 

  13. Arora, M., & Singh, S. (2015). Simulative analysis of Turbo codes over AWGN channel for BPSK modulation scheme. European’s Journal of Advances in Engineering and Technology, 2(6), 29–36.

    Google Scholar 

  14. Trifonov, P. (2012). Efficient design and decoding of polar codes. IEEE Transactions on Communications, 60(11), 3221–3227.

    Article  Google Scholar 

  15. Arikan, E. (2008). A performance comparison of polar codes and Reed-Muller. IEEE Communication Letters, 12(6), 447–449.

    Article  Google Scholar 

  16. Arikan, E. (2011). Systematic polar coding. IEEE Communications Letters, 15(8), 860–862.

    Article  Google Scholar 

  17. Krishna, R. N., Jiang, J., & Nangare, N. A. (2009). Inventors; Iterative soft-input-soft-output decoding of Reed–Solomon codes by adapting the parity check matrix. US patent 7519898 B2, April 2009.

  18. Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9), 1098–1101.

    Article  MATH  Google Scholar 

  19. Shanon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makarand Mohan Jadhav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, M.M., Sapkal, A.M., Pattarkine, R. et al. Modified Iterative Decoding Algorithm for Polar Code Using Maximum Likelihood Estimation. Wireless Pers Commun 98, 1821–1833 (2018). https://doi.org/10.1007/s11277-017-4947-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4947-z

Keywords

Navigation