Skip to main content
Log in

Secure Audio Cryptosystem Using Hashed Image LSB watermarking and Encryption

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The paper proposes a secure audio cryptosystem that realize integrity, authentication and confidentiality. The proposed audio cryptosystem achieves integrity by applying a message digest algorithm, authentication by employing LSB watermarking and confidentiality through encryption with Advanced Encryption Standard (AES) or RC6. The main concept of the proposed audio cryptosystem relays on XORing the plain-audio with one selected image from a private image database. Then, the mixed plain-audio blocks are LSB watermarked with the selected image hash value prior to ciphering. The proposed audio cryptosystem is prepared with the potential of increasing immunity against brute force attacks and providing integrity, authentication and confidentiality through the selected image hash value addition using LSB embedding as an extra key. Also, the extra XORing step removes residual intelligibility from the plain-audio blocks, fills the speechless intervals of audio conversation and helps in destroying format and pitch information. The proposed audio cryptosystem is compared with audio encryption using AES, and RC6 through encryption key performance indicators. The comparison outcomes ensured the superiority of the proposed audio cryptosystem. Security investigation of the proposed audio cryptosystem is studied from a precise cryptographic standpoint and tests ensured the superiority of the proposed audio cryptosystem from a cryptographic standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li, H., Qin, Z., Shao, L., & Wang, B. (2009). A novel audio scrambling algorithm in variable dimension space. In 11th International Conference on Advanced Communication Technology ICACT 2009 (Vol. 03, pp. 1647–1651), February 15–18, 2009.

  2. Anas, N. M., Rahman, Z., Shafii, A., Rahman, M. N. A., & Amin, Z. A. M. (2005). Secure speech communication over public switched telephone network. In APACE 2005. Asia-Pacific Conference on Applied Electromagnetcs, December 20–21, 2005.

  3. Daemen, J., & Rijmen, V. (2001). Advanced Encryption Standard (AES), FIPS 197, Technical Report, Katholijke Universiteit, Leuven/ESAT, November 2001.

  4. Daemen, J., & Rijmen, V. (2001). The advanced encryption standard. Dr. Dobb’s Journal, 26(3), 137–139.

    MATH  Google Scholar 

  5. Lan, L. (2011). The AES encryption and decryption realization based on FPGA. In Seventh International Conference on Computational Intelligence and Security (CIS) (pp. 603–607).

  6. Dalmisli, K. V., & Ors, B. (2009). Design of new tiny circuits for AES encryption algorithm. In 3rd International Conference on Signals, Circuits and Systems (SCS) (pp. 1–5).

  7. Feldhofer, M., Wolkerstorfer, J., & Rijmen, V. (2005). AES implementation on a grain of sand. IEE Proceedings of Information Security, 152(1), 13–20.

    Article  Google Scholar 

  8. Lu, C., & Tseng, S. (2002). Integrated design of AES (advanced encryption standard) encrypter and decrypter. In Proceedings of The IEEE International Conference on Application-Specific Systems, Architectures and Processors (pp. 277–285).

  9. Zhu, Q., Li, L., Liu, J., & Xu, N. (2009). The analysis and design of accounting information security system based on AES algorithm. In International Conference on Machine Learning and Cybernetics (Vol. 5, pp. 2713–2718).

  10. Rivest, R. L., Robshaw, M. J. B., Sidney, R., & Yin, Y. L. (1998). The RC6TM block cipher. Cambridge, MA: M. I. T Laboratory for Computer Science.

    Google Scholar 

  11. Contini, S., Rivest, R. L., Robshaw, M. J. B., & Yin, Y. L. (1998). The Security of the RC6TM Block Cipher (Version 1.0). RSA Laboratories, M. I. T Laboratory for Computer Science.

  12. Ragab, A. H. M., Ismail, N. A., & FaragAllah,O. S. (2001). Enhancements and implementation of RC6 block cipher for data security. In Proceedings of International Conference on Electrical and Electronic Technology (Vol. 1, pp. 133–137).

  13. Meier, W., Knudsen, L. R. (2000). Correlations in RC6 with a reduced number of rounds source. In Proceedings of The 7th International Workshop on Fast Software Encryption (pp. 94–108).

  14. Kim, G., Kim, J., & Cho, G. (2009). An improved RC6 algorithm with the same structure of encryption and decryption. In The 11th International Conference on Advanced Communication Technology (ICACT) (Vol. 2, pp. 1211–1215).

  15. Den Boer, B., & Bosselaers, A. (1994). Collisions for the compression function of MD5. In T. Helleseth (Ed.), Advances in Cryptology. proc. Encrypt′ 93. LNCS 765 (pp. 293–304). Springer.

  16. Dobbertin, H. (1996). The status of MD5 after a recent attack, RSA laboratories. CryptoBytes, 2(2), 1–6.

  17. Elshamy, E. M., El-Rabaie, S., Faragallah, O. S., Elshakankiry, O., Abd El-Samie, F. E., El-sayed, H. S., et al. (2015). Efficient audio cryptosystem based on chaotic maps and double random phase encoding. International Journal of Speech Technology, 18(4), 619–631.

    Article  Google Scholar 

  18. Elhoseny, H. M., Faragallah, O. S., Ahmed, H. E. H., Kazemian, H. B., El-sayed, H. S., & Abd El-Samie, F. E. (2016). The effect of fractional Fourier transform in encryption quality for digital images. Optik-International Journal for Light and Electron Optics, 127(1), 315–319.

    Article  Google Scholar 

  19. Elhoseny, H. M., Ahmed, H. E. H., Abbas, A. M., Kazemian, H. B., Faragallah, O. S., El-Rabaie, S. M., et al. (2015). Chaotic encryption of images in the fractional Fourier transform domain using different modes of operation. Signal, Image and Video Processing Journal, 9(3), 611–622.

    Article  Google Scholar 

  20. Elshamy, A. M., Rashed, A. N. Z., Mohamed, A. E. N. A., Faragallah, O. S., Mu, Y., Alshebeili, S. A., & El-Samie, F. A. (2013). Optical image encryption based on chaotic baker map and double random Phase encoding. IEEE/OSA Journal of Lightwave Technology, 31(15), 2533–2539.

  21. Hedelin, P., Norden, F., & Skoglund, J. (1999). SD optimization of spectral coders. In IEEE Workshop on Speech Coding Proc. (pp. 28–30).

  22. Faragallah, O. S., & Afifi, A. (2017). Optical color image cryptosystem using chaotic baker mapping based-double random phase encoding. Optical and Quantum Electronics, 49(3), 1–28.

  23. Elashry, I. F., Faragallah, O. S., Abbas, A. M., El-Rabaie, S., & Abd El-Samie, F. E. (2009). Homomorphic image encryption. Journal of Electronic Imaging, 18(3), 033002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama S. Faragallah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faragallah, O.S. Secure Audio Cryptosystem Using Hashed Image LSB watermarking and Encryption. Wireless Pers Commun 98, 2009–2023 (2018). https://doi.org/10.1007/s11277-017-4960-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4960-2

Keywords

Navigation