Skip to main content
Log in

Introducing Multiband and Wideband Microstrip Patch Antennas Using Fractal Geometries: Development in Last Decade

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper deals with an extensive review of incorporating compactness, multiband and wideband features in microstrip patch antennas and their arrays using electrodynamics of various fractal shapes. A fractal geometry uses self-similar or its own scaled down replica for increasing the perimeter of given shape. This gives rise to increased current length leading to miniaturization. Different fractal shapes like Minkowski Island, Koch snowflake, Sierpinski carpet, Sierpinski gasket, crossbar tree, and several polygonal shapes and their hybrids are discussed in this paper. Applications of these fractal shapes in the field of modern wireless systems are also discussed. This paper also incorporates quantitative analysis involved in achieving miniaturization and multiband properties of microstrip antennas due to fractalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Kumar, G., & Ray, K. P. (2003). Broadband microstrip antennas. Boston, MA: Artech House Antennas and Propagation Library.

    Google Scholar 

  2. Balanis, C. A. (2012). Antenna theory: Analysis and design (3rd ed.). New York, NY: Wiley.

    Google Scholar 

  3. Liu, G., Xu, L., & Wu, Z. (2013). Miniaturized circularly polarized microstrip RFID antenna using fractal metamaterial. International Journal of Antennas and Propagation, Hindawi, Article ID-781357. doi:10.1155/2013/781357.

  4. Prasad, P. C., & Chattoraj, N. (2013). Design of compact Ku band microstrip antenna for satellite communication. In IEEE international conference on communications and signal processing, pp. 196–200. doi:10.1109/iccsp.2013.6577042.

  5. Wnuk, M., Kołosowski, W., Amanowicz, M., & Semeniuk, T. (2000). Active microstrip antenna for personal communication system. Wireless Personal Communications, 47–56. doi:10.1007/0-306-47010-1_5.

  6. Cohen, N. (2005). Fractals’ new era in military antenna design. Defense Electronics, 12–17.

  7. Garg, R., Bhartia, P., Bahl, I., & Ittipiboon, A. (2001). Microstrip antenna design handbook. Boston, MA: Artech House Antennas and Propagation Library.

    Google Scholar 

  8. Kumar, M., & Nath, V. (2016). Analysis of low mutual coupling compact multi-band microstrip patch antenna and its array using defected ground structure. Engineering Science and Technology, an International Journal, 19(2), 866–874. doi:10.1016/j.jestch.2015.12.003.

    Article  MathSciNet  Google Scholar 

  9. Kumar, M., & Nath, V. (2016). Dual-band microstrip line-fed antenna with fractal Spidron defected ground structure. 2016 International symposium on intelligent signal processing and communication systems (ISPACS), Phuket, Thailand, pp. 44–49. doi:10.1109/ISPACS.2016.7824700.

  10. Kumar, M., & Nath, V. (2014). Development and integration of 1-D and 2-D electromagnetic band gap structures with Sierpinski and Minkowski microstrip fractal antenna. Journal of Computational Intelligence and Electronic Systems, 3(3), 168–176. doi:10.1016/j.jestch.2015.12.003.

    Article  Google Scholar 

  11. Badawe, M. E., Almoneef, T., & Ramahi, O. M. (2016). A true metasurface antenna. 2016 IEEE international symposium on antennas and propagation (APSURSI), Fajardo, pp. 1903–1904. doi:10.1109/APS.2016.7696658.

  12. Lee, C. T., & Su, S. W. (2011). Tri-band, stand-alone, PIFA with parasitic, inverted-L plate and vertical ground wall for WLAN applications. Microwave and Optical Technology Letters, 53, 1797–1803. doi:10.1002/mop.26116.

    Article  Google Scholar 

  13. Guo, L., Wang, Y., Du, Z., Gao, Y., & Shi, D. (2014). A compact uniplanar printed dual-antenna operating at the 2.4/5.2/5.8 GHz WLAN bands for laptop computers. IEEE Antennas and Wireless Propagation Letters, 13, 229–232. doi:10.1109/LAWP.2014.2303495.

    Article  Google Scholar 

  14. Liu, Y., Wang, Y., & Du, Z. (2015). A broadband dual-antenna system operating at the WLAN/WiMAX bands for laptop computers. IEEE Antennas and Wireless Propagation Letters, 14, 1060–1063. doi:10.1109/LAWP.2015.2394473.

    Article  Google Scholar 

  15. Ansari, J. A., Yadav, N. P., Mishra, A., Singh, P., & Vishvakarma, B. R. (2012). Analysis of multilayer rectangular patch antenna for broadband operation. Wireless Personal Communications, 62(2), 315–327. doi:10.1007/s11277-010-0055-z.

    Article  Google Scholar 

  16. Yang, W., Wang, H., Che, W., & Wang, J. A. (2013). Wideband and high-gain edge-fed patch antenna and array using artificial magnetic conductor structures. IEEE Antennas and Propagation Letters, 12, 769–772. doi:10.1109/LAWP.2013.2270943.

    Article  Google Scholar 

  17. Lau, P. Y., Yung, K. K. O., & Chen, Z. N. (2011). A wideband high gain double EBG reflector antenna. Proceedings of the 8th international conference on information, communications and signal processing (ICICS 11), pp. 14. doi:10.1109/ICICS.2011.6174225.

  18. Werner, D. H., Haupt, R. L., & Werner, P. L. (1999). Fractal antenna engineering: The theory and design of fractal antenna arrays. IEEE Antenna and Propagation Magazine, 41(5), 37–59. doi:10.1109/74.801513.

    Article  Google Scholar 

  19. Werner, D. H., & Mittra, R. (1999). The theory and design of fractal antenna arrays (pp. 94–203). New York: Frontiers in Electromagnetics IEEE Press. http://as.wiley.com/WileyCDA/WileyTitle/productCd-0780347013,miniSiteCd-IEEE2.html.

  20. Cohen, N. (2002). Fractal antennas and fractal resonators. US Patent 6, 452, 553 B1, 17th September 2002.

  21. Kim, Y., & Jaggard, D. L. (1986). The fractal random array. Proceedings of the IEEE, 74(9), 1278–1280. doi:10.1109/PROC.1986.13617.

    Article  Google Scholar 

  22. Frame, M., & Mandelbrot, B. (2015). A life in many dimensions. Fractals and dynamics in mathematics, science, and the arts: Theory and applications. Singapore: World Scientific Publishing. http://www.worldscientific.com/worldscibooks/10.1142/8238#t=toc.

  23. Falconer, K. J. (2003). Fractal geometry: Mathematical foundations and applications (3rd ed.). New York, NY: Wiley.

    Book  MATH  Google Scholar 

  24. Kraus, J. D. (1950). Antennas (1st ed.). New York, NY: Tata McGraw-Hill.

    Google Scholar 

  25. Landstorfer, F. M., & Sacher, R. R. (1985). Optimization of wire antennas. Letchworth, NY: Wiley, Research Studies Press.

    Google Scholar 

  26. DuHamel, R., & Isbell, D. (1957). Broadband logarithmically periodic antenna structures. In IRE national convention record, Part-I, New York, pp. 119-128. doi:10.1109/IRECON.1957.1150566.

  27. Pfeiffer, A. (1994). The Pfeiffer Quad antenna system. QST, 28–32.

  28. Naji, D. K., Aziz, J. S., & Fyath, R. S. (2012). Design and simulation of RFID aperture coupled fractal antennas. International Journal of Engineering Business Management: Intech Open Science, 4, 1–14. doi:10.5772/50927.

    Article  Google Scholar 

  29. Cohen, N. (2000). Tuning fractal antennas and fractals resonators. US Patent 6, 104, 349, 15 August 2000.

  30. Schmiade, U. (2004). Antenna and method of design. US Patent 2004/0017317, 24 January 2004.

  31. Raga, B. C., & Islam, N. E. (2010). Optimized simulation algorithm for fractal generation and analysis. Progress in Electromagnetics Research M, 11, 225–240. doi:10.2528/PIERM10012610.

    Article  Google Scholar 

  32. Kumar, M. (2014). Design and analysis of Minkowski fractal antenna using microstrip feed. International Journal of Application or Innovation Engineering and Management, 3(1), 223–233.

    Google Scholar 

  33. Sahal, M., & Tiwari, V. N. (2016). Review of circular polarization techniques for design of microstrip antenna. In Proc. Int. Conf. Recent Cognizance in Wireless Comm. and Image Processing, Springer India, pp. 663–669. doi:10.1007/978-81-322-2638-3_74.

  34. Rao, P. N., & Sarma, N. V. S. N. (2008). Minkowski fractal boundary single feed circularly polarized microstrip antenna. Microwave and Optical Technology Letters, 50(11), 2820–22824. doi:10.1002/mop.23813.

    Article  Google Scholar 

  35. Hung, T.-F., Liu, J.-C., Bor, S.-S., & Chen, C. C. (2011). Compact single-feed circularly polarized aperture-coupled stack antenna with Minkowski-Island-based fractal patch. Microwave and Optical Technology Letters, 54(10), 2278–2283. doi:10.1002/mop.27090.

    Article  Google Scholar 

  36. Tripathi, S., Mohan, A., & Yadav, S. (2014). Ultra-wideband antenna using Minkowski-like fractal geometry. Microwave and Optical Technology Letters, 56(10), 2273–2279. doi:10.1002/mop.28571.

    Article  Google Scholar 

  37. Manafi, S., & Deng, H. (2014). Design of a small modified Minkowski fractal antenna for passive deep brain simulation implants. International Journal of Antennas and Propagation, Hindawi, Article ID, 749043. doi:10.1155/2014/749043.

  38. Puente, C., Romeu, J., Pous, R., & Hijazo, A. (1998). Small but long Koch fractal monopole. Electronics Letters, 34(1), 9–10. doi:10.1049/el:19980114.

    Article  Google Scholar 

  39. Vinoy, K. J., Abraham, J. K., & Varadan, V. K. (2003). On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves. IEEE Transactions on Antennas and Propagation, 51(9), 2296–2303. doi:10.1109/TAP.2003.816352.

    Article  Google Scholar 

  40. Baliarda, C. P., Romeu, J., & Cardama, A. (2000). The Koch monopole: A small fractal antenna. IEEE Transactions on Antennas and Propagation, 48(11), 1773–1781. doi:10.1109/8.900236.

    Article  Google Scholar 

  41. Best, S. R. (2002). On the resonant behavior of the small Koch fractal monopole antenna. Microwave and Optical Technology Letters, 35(4), 311–315. doi:10.1002/mop.10593.

    Article  Google Scholar 

  42. Borja, C., & Romeu, J. (2003). On the behavior of Koch Island fractal boundary microstrip patch antenna. IEEE Transactions on Antennas and Propagation, 51(6), 1281–1291. doi:10.1109/TAP.2003.811479.

    Article  Google Scholar 

  43. Rao, P. N., & Sarma, N. V. S. N. (2008). The effect of indentation angle of Koch fractal boundary on the performance of microstrip antenna. International Journal of Antennas and Propagation, Hindawi, Article ID, 387686. doi:10.1155/2008/387686.

  44. Zarrabi, F. B., Mansouri, Z., Gandji, N. P., & Kuhestani, H. (2015). Triple-notch UWB monopole antenna with fractal Koch and T-shaped stub. International Journal of Electronics and Communications (AEU), 70(1), 64–69. doi:10.1016/j.aeue.2015.10.001.

    Article  Google Scholar 

  45. Kumar, Y., & Singh, S. (2015). A compact multiband hybrid fractal antenna for multistandard mobile wireless applications. Wireless Personal Communications, Springer-Science, 84(1), 57–67. doi:10.1007/s11277-015-2593-x.

    Article  Google Scholar 

  46. Jahromi, M. N., Falahati, A., & Edwards, R. M. (2011). Bandwidth and impedance-matching enhancement of fractal monopole antennas using compact grounded coplanar waveguide. IEEE Transactions on Antennas and Propagation, 59(7), 2480–2487. doi:10.1109/TAP.2011.2152321.

    Article  Google Scholar 

  47. Chen, W. L., Wang, G. M., & Zhang, C. X. (2008). Small-size microstrip patch antennas combining Koch and Sierpinski fractal shapes. IEEE Antennas and Wireless Propagation Letters, 7, 738–741. doi:10.1109/LAWP.2008.2002808.

    Article  Google Scholar 

  48. Ghatak, R., Karmakar, A., & Poddar, D. R. (2012). Hexagonal boundary Sierpinski carpet fractal shaped compact ultrawideband antenna with band rejection functionality. International Journal of Electronics and Communications (AEU), 67(3), 250–255. doi:10.1016/j.aeue.2012.08.007.

    Article  Google Scholar 

  49. Sierpinski, W. (1915). Sur une courbe dont tout point est un point de ramification (pp. 160–320). Paris: C. R. Acad.

    MATH  Google Scholar 

  50. Puente, C., Romeu, J., Pous, R., Gracia, X., & Benitez, F. (1996). Fractal multiband antenna based on the Sierpinski gasket. Electronics Letters, 32(1), 1–2. doi:10.1049/el:19960033.

    Article  Google Scholar 

  51. Puente, C., Romeu, J., Pous, R., & Cardama, A. (1998). On the behavior of the Sierpinski multiband fractal antenna. IEEE Transactions on Antennas and Propagation, 46(4), 517–524. doi:10.1109/8.664115.

    Article  MathSciNet  MATH  Google Scholar 

  52. Puente, C., Borja, C., Rodero, M. N., & Romeu, J. (2000). An iterative model for fractal antennas: Application to the Sierpinski gasket antenna. IEEE Transactions on Antennas and Propagation, 48(5), 713–719. doi:10.1109/8.855489.

    Article  Google Scholar 

  53. Singh, A., & Singh, S. (2015). A modified coaxial probe-fed Sierpinski fractal wideband and high gain antenna. International Journal of Electronics and Communications (AEU), 69(6), 884–889. doi:10.1016/j.aeue.2015.02.001.

    Article  Google Scholar 

  54. Chowdary, P. S. R., Prasad, A. M., Rao, P. M., & Anguera, J. (2015). Design and performance study of Sierpinski fractal based patch antennas for multiband and miniaturization characteristics. Wireless Personal Communications: Springer-US, 83(3), 1713–1730. doi:10.1007/s11277-015-2472-5.

    Article  Google Scholar 

  55. Mishra, R. K., Ghatak, R., & Poddar, D. R. (2008). Design formula for Sierpinski gasket pre-fractal planar-monopole antennas. IEEE Antennas and Propagation Magazine, 50(3), 104–107. doi:10.1109/MAP.2008.4563575.

    Article  Google Scholar 

  56. Moghadasi, M. N., Sadeghzadeh, R. A., Aribi, T., Sedghi, T., & Virdee, B. (2013). UWB CPW-fed fractal patch antenna with band-notched function employing folded T-shaped element. IEEE Antennas and Wireless Propagation Letters, 12, 504–507. doi:10.1109/LAWP.2013.2256455.

    Article  Google Scholar 

  57. Varadhan, C., Pakkathillam, J. K., Kanagasabai, M., Sivasamy, R., Natarajan, R., & Palaniswamy, S. K. (2013). Triband antenna structures for RFID systems deploying fractal geometry. IEEE Antennas and Wireless Propagation Letters, 12, 437–440. doi:10.1109/LAWP.2013.2254458.

    Article  Google Scholar 

  58. Kumar, M. & Nath, V. (2016). Design and simulation of tri-band Spidron fractal equilateral triangle microstrip antenna. In 2016 International conference on advances in computing, communications and informatics (ICACCI), Jaipur, 2016, pp. 287–293. doi:10.1109/ICACCI.2016.7732061.

  59. Reha, A, Amri, A. E., & Benhmammouch, O. (2016). CPW-fed dragon fractal antenna for UWB applications. In Advances in ubiquitous networking 2: Proceedings of the UNet’16, Springer Singapore, pp. 423–429. doi:10.1007/978-981-10-1627-1_33.

  60. Gorai, A., Karmakar, A., Pal, M., & Ghatak, R. (2013). Multiple fractal-shaped slots-based UWB antenna with triple-band notch functionality. Journal of Electromagnetic Waves and Applications, 27(18), 2407–2415. doi:10.1080/09205071.2013.852486.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ministry of Electronics and Information Technology, Govt. of India for supporting this research under Visvesvaraya PhD scheme for Electronics and IT. Funding was provided by Department of Electronics and Information Technology, Ministry of Communications and Information Technology (Grant No. PhD-MLA/4(60)/2015-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Nath, V. Introducing Multiband and Wideband Microstrip Patch Antennas Using Fractal Geometries: Development in Last Decade. Wireless Pers Commun 98, 2079–2105 (2018). https://doi.org/10.1007/s11277-017-4965-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4965-x

Keywords

Navigation