Skip to main content
Log in

A Novel Random Transition Based PSO Algorithm to Maximize the Lifetime of Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The lifetime of a wireless sensor network (WSN) is a critical aspect as, in most of the applications, it is not possible to replace or recharge the batteries of the sensor nodes. The lifetime of a WSN with redundant deployment can be significantly increased by dividing the sensors into disjoint sets such that each of these sets, when operated independently, provides complete coverage of the targets. In order to maximize the lifetime of the network, the maximum possible number of such sets needs to be created. The problem has been proved to be nondeterministic polynomial complete. In this paper, a hybrid approach based on combining particle swarm optimization (PSO) with random transition moves has been proposed to address this problem. A swarm of randomly initialized particles explores the entire solution space in search of an optimum solution. Three novel random transition moves have been designed to exploit the redundancy in deployment of sensors and used to guide the randomly scattered particles towards the potential optimum solutions in their neighborhood. The transition moves escalate the convergence of the algorithm. The proposed algorithm has been tested both for point coverage and area coverage applications. To authenticate and validate the results, the comparison of the results is performed with the latest existing techniques. The proposed algorithm always finds the optimum solution by making fewer fitness function evaluations. The sensitivity analysis of the control parameters has also been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Biagioni, E., & Giordano, S. (2013). Topics in ad hoc and sensor networks [Series Editorial]. IEEE Communications Magazine, 51(7), 106.

    Article  Google Scholar 

  2. Zhao, J., Xi, W., He, Y., Liu, Y., Li, X.-Y., Mo, L., et al. (2013). Localization of wireless sensor networks in the wild: Pursuit of ranging quality. IEEE/ACM Transactions on Networking, 21(1), 311–323.

    Article  Google Scholar 

  3. Ojha, T., Khatua, M., & Misra, S. (2013). Tic-Tac-Toe-Arch: A self-organising virtual architecture for underwater sensor networks. IET Wireless Sensor Systems, 3(4), 307–316.

    Article  Google Scholar 

  4. Matic, A., Osmani, V., & Mayora, O. (2013). Trade-offs in monitoring social interactions. IEEE Communications Magazine, 51(7), 114–121.

    Article  Google Scholar 

  5. Martin, I., O’Farrell, T., Aspey, R., Edwards, S., James, T., Loskot, P., et al. (2014). A high-resolution sensor network for monitoring glacier dynamics. IEEE Sensors Journal, 14(11), 3926–3931.

    Article  Google Scholar 

  6. Kampianakis, E., Kimionis, J., Tountas, K., Konstantopoulos, C., Koutroulis, E., & Bletsas, A. (2014). Wireless environmental sensor networking with analog scatter radio and timer principles. IEEE Sensors Journal, 14(10), 3365–3376.

    Article  Google Scholar 

  7. Gruden, M., Jobs, M., & Rydberg, A. (2014). Empirical tests of wireless sensor network in jet engine including characterization of radio wave propagation and fading. IEEE Antennas and Wireless Propagation Letters, 13, 762–765.

    Article  Google Scholar 

  8. Bhuiyan, M., Wang, G., Cao, J., & Wu, J. (2015). Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Transactions on Computers, 64(2), 382–395.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C., Yan, J., Lu, N., Wang, Y., Yang, X., & Guan, X. (2015). Ubiquitous monitoring for industrial cyber-physical systems over relay-assisted wireless sensor networks. IEEE Transactions on Emerging Topics in Computing, 3(3), 352–362.

    Article  Google Scholar 

  10. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  11. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  12. Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921–960.

    Article  Google Scholar 

  13. Zheng, J., & Jamalipour, A. (2009). Wireless sensor networks—A networking perspective. New Jersey: Wiley.

    Book  MATH  Google Scholar 

  14. Anastasi, G., Conti, M., Francesco, M. D., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  15. Cardei, M., & Du, D.-Z. (2005). Improving wireless sensor network lifetime through power aware organization. Wireless Networks, 11(3), 333–340.

    Article  Google Scholar 

  16. Hu, X.-M., Zhang, J., Yu, Y., Chung, H. S.-H., Li, Y.-L., Shi, Y.-H., et al. (2010). Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Transactions on Evolutionary Computation, 14(5), 766–781.

    Article  Google Scholar 

  17. Zhu, C., Leung, V., Yang, L., & Shu, L. (2015). Collaborative location-based sleep scheduling for wireless sensor networks integrated with mobile cloud computing. IEEE Transactions on Computers, 64(7), 1844–1856.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hsueh, C.-T., Wen, C.-Y., & Ouyang, Y.-C. (2015). A secure scheme against power exhausting attacks in hierarchical wireless sensor networks. IEEE Sensors Journal, 15(6), 3590–3602.

    Article  Google Scholar 

  19. Tashtarian, F., Moghaddam, M. H. Y., Sohraby, K., & Effati, S. (2015). On maximizing the lifetime of wireless sensor networks in event-driven applications with mobile sinks. IEEE Transactions on Vehicular Technology, 64(7), 3177–3189.

    Google Scholar 

  20. Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. (2014). Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 774–783.

    Article  Google Scholar 

  21. Cotuk, H., Bicakci, K., Tavli, B., & Uzun, E. (2014). The impact of transmission power control strategies on lifetime of wireless sensor networks. IEEE Transactions on Computers, 63(11), 2866–2879.

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeon, J.-H., Byun, H.-J., & Lim, J.-T. (2013). Joint contention and sleep control for lifetime maximization in wireless sensor networks. IEEE Communications Letters, 17(2), 269–272.

    Article  Google Scholar 

  23. Al-Hamadi, H., & Chen, I.-R. (2013). Redundancy management of multipath routing for intrusion tolerance in heterogeneous wireless sensor networks. IEEE Transactions on Network and Service Management, 10(2), 189–203.

    Article  Google Scholar 

  24. Han, K., Luo, J., Liu, Y., & Vasilakos, A. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.

    Article  Google Scholar 

  25. Singh, S., Chand, S., Kumar, R., & Kumar, B. (2013). Optimal sensor deployment for WSNs in grid environment. Electronics Letters, 49(16), 1040–1041.

    Article  Google Scholar 

  26. Derr, K., & Manic, M. (2013). Wireless sensor network configuration—Part I: Mesh simplification for centralized algorithms. IEEE Transactions on Industrial Informatics, 9(3), 1717–1727.

    Article  Google Scholar 

  27. Huang, C.-F., & Tseng, Y.-C. (2005). The coverage problem in a wireless sensor network. Mobile Networks and Applications, 10(4), 519–528.

    Article  Google Scholar 

  28. Chakrabarty, K., Iyengar, S. S., Qi, H., & Cho, E. (2002). Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transactions on Computers, 51(12), 1448–1453.

    Article  MathSciNet  Google Scholar 

  29. Dhillon, S. S., & Chakrabarty, K. (2003). Sensor placement for effective coverage and surveillance in distributed sensor networks. In Proceedings of IEEE wireless communications and networking conference, WCNC 2003, LA, USA, Vol. 3, pp. 1609–1614.

  30. Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2008). Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Transactions on Mobile Computing, 7(2), 262–274.

    Article  Google Scholar 

  31. Khanjary, M., Sabaei, M., & Meybodi, M. R. (2014). Critical density for coverage and connectivity in two-dimensional aligned-orientation directional sensor networks using continuum percolation. IEEE Sensors Journal, 14(8), 2856–2863.

    Article  Google Scholar 

  32. Wang, X., & Wang, S. (2011). Hierarchical deployment optimization for wireless sensor networks. IEEE Transactions on Mobile Computing, 10(7), 1028–1041.

    Article  Google Scholar 

  33. Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremental self deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2), 113–126.

    Article  MATH  Google Scholar 

  34. Heo, N., & Varshney, P. K. (2005). Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man, Cybernetics, Part A: Systems and Humans, 35(1), 78–92.

    Article  Google Scholar 

  35. Kulkarni, R., & Venayagamoorthy, G. (2010). Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 40(6), 663–675.

    Article  Google Scholar 

  36. Chang, C.-Y., & Chang, H.-R. (2008). Energy-aware node placement, topology control and MAC scheduling for wireless sensor networks. Computer Networks, 52(11), 2189–2204.

    Article  MATH  Google Scholar 

  37. Leung, H., Chandana, S., & Wei, S. (2008). Distributed sensing based on intelligent sensor networks. IEEE Circuits and Systems Magazine, 8(2), 38–52.

    Article  Google Scholar 

  38. Iyengar, S. S., Wu, H.-C., Balakrishnan, N., & Chang, S. Y. (2007). Biologically inspired cooperative routing for wireless mobile sensor networks. IEEE Systems Journal, 1(1), 29–37.

    Article  Google Scholar 

  39. Cui, S., Madan, R., Goldsmith, A. J., & Lall, S. (2007). Cross-layer energy and delay optimization in small-scale sensor networks. IEEE Transactions on Wireless Communication, 6(10), 3688–3699.

    Article  Google Scholar 

  40. Yu, Y., Prasanna, V. K., & Krishnamachari, B. (2006). Energy minimization for real-time data gathering in wireless sensor networks. IEEE Transactions on Wireless Communication, 5(11), 3087–3096.

    Article  Google Scholar 

  41. Cardei, M., & Wu, J. (2006). Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 29(4), 413–420.

    Article  Google Scholar 

  42. Baek, S. J., Veciana, Gd, & Su, X. (2004). Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation. IEEE Journal on Selected Areas in Communication, 22(6), 1130–1140.

    Article  Google Scholar 

  43. Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless sensor networks. Proceedings of IEEE International Conference on Communications, Helsinki, 2, 472–476.

    Google Scholar 

  44. Schurgers, C., Tsiatsis, V., Ganeriwal, S., & Srivastava, M. (2002). Optimizing sensor networks in the energy-latency-density design space. IEEE Transactions on Mobile Computing, 1(1), 70–80.

    Article  Google Scholar 

  45. Raghunathan, V., Schurghers, C., Park, S., & Srivastava, M. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.

    Article  Google Scholar 

  46. Lin, Y., Zhang, J., Chung, H.-H., Ip, W., Li, Y., & Shi, Y.-H. (2012). An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 42(3), 408–420.

    Article  Google Scholar 

  47. Ashouri, M., Zali, Z., Mousvi, S., & Hashemi, M. (2012). New optimal solution to disjoint set k-coverage for lifetime extension in wireless sensor networks. IET Wireless Sensor Systems, 2(1), 31–39.

    Article  Google Scholar 

  48. Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., & Scarsi, R. (2000). A discrete-time battery model for high-level power estimation. In Proceedings of design, automation and test in Europe conference and exhibition, Paris, pp. 35–39.

  49. Wang, L., & Xiao, Y. (2006). A survey of energy-efficient scheduling mechanisms in sensor networks. Mobile Networks and Applications, 11(5), 723–740.

    Article  Google Scholar 

  50. Funke, S., Kesselman, A., Kuhn, F., Lotker, Z., & Segal, M. (2007). Improved approximation algorithms for connected sensor cover. Wireless Networks, 13(2), 153–164.

    Article  Google Scholar 

  51. Lin, J.-W., & Chen, Y.-T. (2008). Improving the coverage of randomized scheduling in wireless sensor networks. IEEE Transactions on Wireless Communications, 7(12), 4807–4812.

    Article  Google Scholar 

  52. Abrams, Z., Goel, A., & Plotkin, S. (2004). Set k-cover algorithms for energy efficient monitoring in wireless sensor networks. In Proceedings of 3rd international symposium on information processing in sensor networks, Berkley, USA, pp. 424–432.

  53. Cardei, M., MacCallum, D., Cheng, M. X., Min, M., Jia, X., Li, D., et al. (2002). Wireless sensor networks with energy efficient organization. Journal of Interconnection Networks, 3(3–4), 213–229.

    Article  Google Scholar 

  54. Lai, C.-C., Ting, C.-K., & Ko, R.-S. (2007). An effective genetic algorithm to improve wireless sensor network lifetime for large-scale surveillance applications. In Proceedings of IEEE congress on evolutionary computation, CEC 2007, Singapore, pp. 3531–3538.

  55. Nagarathna, P., & Manjula R. (2015). Genetic algorithm with a new fitness function to enhance WSN lifetime. In IEEE conference proceedings of international conference on applied and theoretical computing and communication technology (iCATccT), pp. 95–99.

  56. Benzerbadj, A., & Kechar, B. (2013). Redundancy and criticality based scheduling in wireless video sensor networks for monitoring critical areas. In Procedia computer science 21The 4th international conference on emerging ubiquitous systems and pervasive networks (EUSPN-2013), pp. 235–241.

  57. Xie, Z., Huang, G., He, J., & Zhang, Y. (2014). A clique-based WBAN scheduling for mobile wireless body area networks. In Procedia computer science 31Information technology and quantitative management (ITQM 2014), pp. 1092–1101.

  58. Jamali, S., & Hatami, M. (2015). Coverage aware scheduling in wireless sensor networks: An optimal placement approach. Wireless Personal Communication, 85, 1689–1699.

    Article  Google Scholar 

  59. Dobslaw, F., Zhang, T., & Gidlund, M. (2016). End-to-end reliability-aware scheduling for wireless sensor networks. IEEE Transactions on Industrial Informatics, 12(2), 758–767.

    Article  Google Scholar 

  60. Guo, P., Liu, X., Tang, S., & Cao, J. (2016). Enabling coverage-preserving scheduling in wireless sensor networks for structural health monitoring. IEEE Transactions on Computers, 65(8), 2456–2469.

    Article  MathSciNet  MATH  Google Scholar 

  61. Williams, R. (1979). The geometrical foundation of natural structure: A source book of design. New York: Dover.

    Google Scholar 

  62. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In IEEE international conference on neural networks, Perth, pp. 1942–1948.

  63. Valle, Y. D., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J.-C., & Harley, R. G. (2008). Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Transactions on Evolutionary Computation, 12(2), 171–195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tripatjot Singh Panag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panag, T.S., Dhillon, J.S. A Novel Random Transition Based PSO Algorithm to Maximize the Lifetime of Wireless Sensor Networks. Wireless Pers Commun 98, 2261–2290 (2018). https://doi.org/10.1007/s11277-017-4973-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4973-x

Keywords

Navigation