Skip to main content
Log in

A New Time-Domain Model for Multiple Scattering of UWB Signals Through Lossy Obstacles

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a new time-domain (TD) model is proposed for multiple scattering of ultra wideband (UWB) signals through lossy obstacles. Propagation through structures like wedge, single building, and double buildings is presented where buildings are supposed to have rectangular cross sections. Considering two-dimesnional (2-D) and realistic three-dimensional (3-D) scenarios, first an accurate path-tracing algorithm is proposed for multiple scattering of UWB signals through different 2-D and 3-D scenarios and then, TD solution is presented for realistic multiple scattering problems where a single ray-path can undergo diffraction, transmission, and reflection successively. Results are shown for both soft and hard polarizations. Considering Gaussian doublet pulse, the accuracy of the presented TD solution is confirmed by comparing the TD results with the numerical inverse fast Fourier transform (IFFT) of the corresponding frequency-domain (FD) results. It has been found that the field strength at the receiver (Rx) undergoes significant attenuation and distortion for different multiple scattering scenarios. For an in-depth analysis of pulse distortion at Rx, the UWB channel impulse response is analyzed for multiple scattering scenario. Power profile for multiple scattering scenario is also observed to signify the received power at the Rx. To characterize the multipath propagation, UWB multipath is analyzed in terms of time dispersion parameters like mean excess delay and root mean square delay spread. Further to confirm the generality of the proposed TD solution, the results are shown for a variety of other UWB pulses like monocycle and fourth-order Gaussian monocycle pulses. Finally, the computational efficiency of the TD and IFFT-FD methods is compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. FCC first report and order: In the matter of revision of part 15 of the comparison’s rules regarding ultra-wideband transmission system, FCC 02-48, April 2002.

  2. Molisch, A. F. (2005). Ultrawideband propagation channels-theory, measurement, and modelling. IEEE Transactions on Vehicular Technology, 54(5), 1528–1545.

    Article  Google Scholar 

  3. Batra, A., et al. (2003). Multi-Band OFDM physical layer proposal. Document IEEE 802.15-03/267r2.

  4. Win, M. Z., & Scholtz, R. A. (1998). On the energy capture of ultrawide bandwidth signals in dense multipath environments. IEEE Communications Letters, 2(9), 245–247.

    Article  Google Scholar 

  5. Gezici, S., Tian, Z., Giannakis, G. B., Kobayashi, H., Molisch, A. F., Poor, H. V., et al. (2005). Localization via ultra-wideband radios. IEEE Signal Processing Magazine, 22(4), 70–84.

    Article  Google Scholar 

  6. Mireles, F. R. (2001). Performance of ultrawideband SSMA using time hopping and M-ary PPM. IEEE Journal on Selected Areas in Communications, 19(6), 1186–1196.

    Article  Google Scholar 

  7. Santos, T., Karedal, J., Almers, P., Tufvesson, F., & Molisch, A. F. (2010). Modeling the ultra-wideband outdoor channel: Measurements and parameter extraction method. IEEE Transactions on Wireless Communications, 9(1), 282–290.

    Article  Google Scholar 

  8. Haneda, K., Richter, A., & Molisch, A. F. (2012). Modeling the frequency dependence of ultra-wideband spatio-temporal indoor radio channels. IEEE Transactions on Antennas and Propagation, 60(6), 2940–2950.

    Article  MathSciNet  MATH  Google Scholar 

  9. Qiu, R. C. (2004). A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design—Part II: Physics-based system analysis. IEEE Transactions on Wireless Communications, 3(6), 2312–2324.

    Article  Google Scholar 

  10. Al-Samman, A. M., Chude-Okonkwo, U. A. K., Ngah, R., & Nunoo, S. (2014). Experimental characterization of an UWB channel in outdoor environment. In Proceedings of the 10th International Colloquium on Signal Processing & its Applications (CSPA2014) (pp. 91–94), Kuala Lumpur, Malaysia.

  11. Lee, J. Y. (2010). UWB channel modeling in roadway and indoor parking environments. IEEE Transactions of Vehicular Technology, 59(7), 3171–3180.

    Article  Google Scholar 

  12. Liang, J., & Liang, Q. (2010). Outdoor propagation channel modeling in foliage environment. IEEE Transactions on Vehicular Technology, 59(5), 2243–2252.

    Article  Google Scholar 

  13. Anderson, C. R., Volos, H. I., & Buehrer, R. M. (2013). Characterization of low-antenna ultrawideband propagation in a forest environment. IEEE Transactions on Vehicular Technology, 62(7), 2878–2895.

    Article  Google Scholar 

  14. Al-Samman, A. M., Rahman, T. A., Nunoo, S., Chude-Okonkwo, U. A. K., Ngah, R., Shaddad, R. Q., et al. (2015). Experimental characterization and analysis for ultra wideband outdoor channel. Wireless Personal Communications, 83(1), 3103–3118.

    Article  Google Scholar 

  15. Dezfooliyan, A., & Weiner, A. M. (2012). Evaluation of time domain propagation measurements of UWB systems using spread spectrum channel sounding. IEEE Transactions on Antennas and Propagation, 60(10), 4855–4865.

    Article  Google Scholar 

  16. Asif, H. M., Honary, B., & Ahmed, H. (2012). Multiple-input multiple-output ultra-wide band channel modelling method based on ray tracing. IET Communications, 6(10), 1195–1204.

    Article  MathSciNet  MATH  Google Scholar 

  17. Irahhauten, Z., Nikookar, H., & Janssen, G. (2004). An overview of ultra wide band indoor channel measurements and modeling. IEEE Microwave and Wireless Components Letters, 14(8), 386–388.

    Article  Google Scholar 

  18. Molisch, A. F. (2009). Ultra-wide-band propagation channels. Proceedings of the IEEE, 97(2), 353–371.

    Article  Google Scholar 

  19. Ghassemzadeh, S. S., Greenstein, L. J., Kavcic, A., Sveinsson, T., & Tarokh, V. (2003). An empirical indoor path loss model for ultra-wideband channels. Journal of Communication Network, 5(4), 303–308.

    Article  Google Scholar 

  20. Noori, N., Karimzadeh-Baee, R., & Abolghasemi, A. (2009). An empirical ultra wideband channel model for indoor laboratory environments. Radioengineering, 18(1), 68–74.

    Google Scholar 

  21. Qiu, R. C., Liu, H., & Shen, X. (2005). Ultra-wideband for multiple access communications. IEEE Communications Magazine, 43(2), 80–87.

    Article  Google Scholar 

  22. Qiu, R. C., Zhou, C., & Liu, Q. (2005). Physics-based pulse distortion for ultra-wideband signals. IEEE Transactions on Vehicular Technology, 54(5), 1546–1555.

    Article  Google Scholar 

  23. Qiu, R. C. (2002). A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design. IEEE Journal on Selected Areas in Communications, 20(9), 1628–1637.

    Article  Google Scholar 

  24. Qiu, R. C. (2006). A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design—Part III: System performance analysis. IEEE Transactions on Wireless Communications, 5(10), 2685–2695.

    Article  Google Scholar 

  25. Karousos, A., & Tzaras, C. (2008). Multiple time-domain diffraction for UWB signals. IEEE Transactions on Antennas and Propagation, 56(5), 1420–1427.

    Article  Google Scholar 

  26. Tewari, P., Soni, S., & Bansal, B. (2014). Time-domain solution for transmitted field through low-loss dielectric obstacles in a microcellular and indoor scenario for UWB signals. IEEE Transactions on Vehicular Technology, 64(2), 541–552.

    Article  Google Scholar 

  27. Bansal, B., & Soni, S. (2015). A new time-domain corner diffraction coefficient for metallic and dielectric objects for UWB signals. Microwave and Optical Technology Letters, 57(7), 1760–1765.

    Article  Google Scholar 

  28. Kouyoumjian, R. G., & Pathak, P. H. (1974). A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE, 62(11), 1448–1461.

    Article  Google Scholar 

  29. Rousseau, P. R., & Pathak, P. H. (1995). Time-domain uniform geometrical theory of diffraction for a curved wedge. IEEE Transactions on Antennas and Propagation, 43(12), 1375–1382.

    Article  Google Scholar 

  30. Rousseau, P. R., Pathak, P. H., & Chou, H. T. (2007). A time domain formulation of the uniform geometrical theory of diffraction for scattering from a smooth convex surface. IEEE Transactions on Antennas and Propagation, 55(6), 1522–1534.

    Article  MathSciNet  MATH  Google Scholar 

  31. Górniak, P., & Bandurski, W. (2008). Direct time domain analysis of an UWB pulse distortion by convex objects with the slope diffraction included. IEEE Transactions on Antennas and Propagation, 56(9), 3036–3044.

    Article  Google Scholar 

  32. Barnes, P. R., & Tesche, F. M. (1991). On the direct calculation of a transient plane wave reflected from a finitely conducting half space. IEEE Transactions on Electromagnetic Compatibility, 33(2), 90–96.

    Article  Google Scholar 

  33. Attiya, A. M., & Safaai-Jazi, A. (2004). Simulation of ultra-wideband indoor propagation. Microwave and Optical Technology Letters, 42(2), 103–108.

    Article  Google Scholar 

  34. Jong, Y. L. C. D., Koelen, M. H. J. L., & Herben, M. H. A. J. (2004). A building-transmission model for improved propagation prediction in urban microcells. IEEE Transactions on Vehicular Technology, 53(2), 490–502.

    Article  Google Scholar 

  35. Chen, Z., Yao, R., & Guo, Z. (2004). The characteristics of UWB signal transmitting through a lossy dielectric slab. In Proceedings of the IEEE 60th Vehicular Technology Conference, VTC 2004-Fall (Vol. 1, pp. 134–138). Los Angeles, CA, USA.

  36. Yang, W., Qinyu, Z., Naitong, Z., & Peipei, C. (2007). Transmission characteristics of ultra-wide band impulse signals. In Proceedings of the IEEE International Conference on Wireless Communications Networking and Mobile computing (pp. 550–553). Shanghai.

  37. Yang, W., Naitong, Z., Qinyu, Z., & Zhongzhao, Z. (2008). Simplified calculation of UWB signal transmitting through a finitely conducting slab. Journal of Systems Engineering and Electronics, 19(6), 1070–1075.

    Article  Google Scholar 

  38. Bansal, B., & Soni, S. (2014). A new time-domain solution to transmission through a multilayer low-loss dielectric wall structure for UWB signals. Wireless Personal Communications, 79(1), 581–598.

    Article  Google Scholar 

  39. Brigham, E. O. (1988). The fast Fourier transform and its applications. New Jersey: Prentice Hall.

    Google Scholar 

  40. Sevgi, L. (2007). Numerical Fourier transforms: DFT and FFT. IEEE Antennas and Propagation Magazine, 49(3), 238–243.

    Article  Google Scholar 

  41. Chauhan, P. S., Soni, S., & Shanker, Y. (2013). A novel approach to predict field strength in the shadow of a 3-D building scenario. Wireless Personal Communications, 70(4), 1683–1695.

    Article  Google Scholar 

  42. Remcom. (2008). Wireless insite, site-specific radio propagation prediction software user’s manual version 2.3. State College, PA.

  43. Liu, P., Tan, J., & Long, Y. (2011). Time domain UTD-PO solution for the multiple diffraction of spherical waves for UWB signals. IEEE Transactions on Antennas and Propagation, 59(4), 1420–1424.

    Article  MathSciNet  MATH  Google Scholar 

  44. Balanis, C. A. (1989). Advanced engineering electromagnetic. New York: Wiley.

    Google Scholar 

  45. Hu, B., & Beaulieu, N. C. (2005). Pulse shapes for ultrawideband communication systems. IEEE Transactions on Wireless Communications, 4(4), 1789–1797.

    Article  Google Scholar 

  46. Pepe, D., Aluigi, L., & Zito D. (2016). Sub-100 ps monocycle pulses for 5G UWB communications. In Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP) (pp. 1–4). Davos.

  47. Ahmadi-Shokouh, J., & Qiu, R. C. (2009). Ultra-wideband (UWB) communications channel measurements—A tutorial review. International Journal of Ultra Wideband Communications and Systems, 1(1), 11–31.

    Article  Google Scholar 

  48. Rappaport, T. S. (1996). Wireless communications: Principles and practice. Upper Saddle River: Prentice Hall PTR.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Soni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, B., Soni, S. & Tewari, P. A New Time-Domain Model for Multiple Scattering of UWB Signals Through Lossy Obstacles. Wireless Pers Commun 98, 2775–2797 (2018). https://doi.org/10.1007/s11277-017-5000-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5000-y

Keywords

Navigation