Skip to main content
Log in

Efficient Detection for Improving ASEP Performance of MIMO Composite Fading Channel with Generalized Noise

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multiple-input multiple-output (MIMO) system has achieved significant benefits by applying optimum detection techniques. Maximum likelihood (ML) detection technique improves the error rate performance of MIMO system at optimum level but with enhanced complexity. Therefore, we have considered minimum mean square error-ordered successive interference cancellation with candidate detection to approach the performance of ML with reduced complexity. The proposed system performance is analyzed in composite Weibull–gamma fading and additive white generalized Gaussian noise (AWGGN) scenario. Some special cases of WG fading and AWGGN yield the simplified results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Kim, W., Kim, N., Chung, H. K., & Lee, H. (2013). SINR distribution for MIMO MMSE receivers in transmit-correlated Rayleigh channels: SER performance and high-SNR power allocation. IEEE Transactions on Vehicular Technology, 62(8), 4083–4087.

    Article  Google Scholar 

  2. Zhang, H., Dai, H., & Hughes, B. L. (2009). Analysis on the diversity-multiplexing tradeoff for ordered MIMO SIC receivers. IEEE Transactions on Communications, 57(1), 125–133.

    Article  Google Scholar 

  3. Im, T.-H., Kim, J., Yi, J.-H., Yun, S., & Cho, Y.-S. MMSE-OSIC2 Signal detection for spatially multiplexed MIMO systems. In Vehicular technology conference, 2008. VTC Spring 2008. IEEE, 2008 (pp. 1468–1472). IEEE.

  4. Tiwari, K., Saini, D. S., & Bhooshan, S. V. (2016). Performance improvement in spatially multiplexed MIMO systems over Weibull–gamma fading channel. Frequenz, 70(11–12), 547–553.

    Google Scholar 

  5. Dai, Y., Sun, S., & Lei, Z. (2005). A comparative study of QRD-M detection and sphere decoding for MIMO-OFDM systems. In Personal, indoor and mobile radio communications, 2005. PIMRC 2005. IEEE 16th international symposium on, 2005 (vol. 1, pp. 186–190). IEEE.

  6. Shankar, P. M. (2011). Statistical models for fading and shadowed fading channels in wireless systems: A pedagogical perspective. Wireless Personal Communications, 60(2), 191–213.

    Article  Google Scholar 

  7. Erdogan, E., Afana, A., & Ikki, S. Multi-antenna down-link cooperative systems over composite multipath# x002F; shadowing channels. In Wireless communications and networking conference (WCNC), 2017 IEEE, 2017 (pp. 1–5). IEEE.

  8. Soury, H., & Alouini, M.-S. (2015). Symbol error rate of MPSK over EGK channels perturbed by a dominant additive Laplacian noise. IEEE Transactions on Communications, 63(7), 2511–2523.

    Article  Google Scholar 

  9. Singh, S. P., & Kumar, S. (2017). Closed form expressions for ABER and capacity over EGK fading channel in presence of CCI. International Journal of Electronics, 104(3), 513–527.

    Article  Google Scholar 

  10. Tiwari, K., & Saini, D. S. SER improvisation of MIMO-MRC system over Weibull–gamma fading channel. In Signal processing and communication (ICSC), 2015 international conference on, 2015 (pp. 70–73). IEEE.

  11. Bithas, P. S. (2009). Weibull–gamma composite distribution: alternative multipath/shadowing fading model. Electronics Letters, 45(14), 749–751.

    Article  Google Scholar 

  12. Tiwari, K., Saini, D. S., & Bhooshan, S. V. (2016). On the capacity of MIMO Weibull–gamma fading channels in low SNR regime. Journal of Electrical and Computer Engineering, 2016.

  13. Nadarajah, S., & Kotz, S. (2007). A class of generalized models for shadowed fading channels. Wireless Personal Communications, 43(4), 1113–1120.

    Article  Google Scholar 

  14. Tiwari, K., Saini, D. S., & Bhooshan, S. V. (2016). Antenna selection for MIMO systems over Weibull–gamma fading channel. Perspectives in Science, 8, 475–478.

    Article  Google Scholar 

  15. Reddy, T. S. B., Subadar, R., & Sahu, P. Outage probability of selection combiner over exponentially correlated Weibull–gamma fading channels for arbitrary number of branches. In Communications (NCC), 2010 National Conference on, 2010 (pp. 1–5). IEEE.

  16. Ni, Z., Zhang, X., Liu, X., & Yang, D. (2012). Bivariate Weibull–Gamma composite distribution with arbitrary fading parameters. Electronics Letters, 48(18), 1.

    Article  Google Scholar 

  17. Viswanathan, R., & Ansari, A. (1989). Distributed detection of a signal in generalized Gaussian noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(5), 775–778.

    Article  Google Scholar 

  18. Soury, H., Yilmaz, F., & Alouini, M.-S. (2013). Error rates of M-PAM and M-QAM in generalized fading and generalized Gaussian noise environments. IEEE Communications Letters, 17(10), 1932–1935.

    Article  Google Scholar 

  19. Tiwari, K., Saini, D. S., & Bhooshan, S. V. (2016). ASEP of MIMO system with MMSE-OSIC detection over Weibull–gamma fading channel subject to AWGGN. Journal of Computer Networks and Communications, 2016, 4.

    Article  Google Scholar 

  20. Beaulieu, N. C. (2006). A useful integral for wireless communication theory and its application to rectangular signaling constellation error rates. IEEE Transactions on Communications, 54(5), 802–805.

    Article  Google Scholar 

  21. Yilmaz, F., & Alouini, M.-S. A new simple model for composite fading channels: Second order statistics and channel capacity. In Wireless communication systems (ISWCS), 2010 7th international symposium on, 2010 (pp. 676–680). IEEE.

  22. Kawai, H., Higuchi, K., Maeda, N., & Sawahashi, M. (2006). Adaptive control of surviving symbol replica candidates in QRM-MLD for OFDM MIMO multiplexing. IEEE Journal on Selected Areas in Communications, 24(6), 1130–1140.

    Article  Google Scholar 

  23. Golden, G., Foschini, C., Valenzuela, R., & Wolniansky, P. (1999). Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture. Electronics Letters, 35(1), 14–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keerti Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, K., Saini, D.S. & Bhooshan, S.V. Efficient Detection for Improving ASEP Performance of MIMO Composite Fading Channel with Generalized Noise. Wireless Pers Commun 98, 2913–2923 (2018). https://doi.org/10.1007/s11277-017-5007-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5007-4

Keywords

Navigation