Skip to main content
Log in

A Novel MIMO Channel Model for Vehicle-to-Vehicle Communication System on Narrow Curved-Road Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a generalized statistical multiple-input multiple-output (MIMO) fading channel model for a vehicle-to-vehicle (V2V) non-line of sight mobile communication system on narrow curved-road environments. The MIMO channel model captures the propagation effect that occurs when vehicles move towards a junction with a side road and corner scatterings. In this paper, both single- and double-bounced scattering mechanisms are considered and it is assumed that the scatterers are uniformly distributed in the form of narrow arcs outside the annular road. Our geometry-based channel model takes the exact relationship between the angle-of-arrival and the angle-of-departure into account. Thereafter, the statistical properties of the model are studied under the assumption of non-isotropic scattering. Analytical expressions of different parameters, such as the space–time-frequency cross-correlation function, Doppler power spectral density, and MIMO channel capacity are provided. Furthermore, the influence of model parameters on the performance of V2V communication system has been analyzed. The study provides a design layout of MIMO V2V communication systems with a wide-band spatial channel model enabling the performance analysis of new high-data-rate transmission schemes for narrow curved-road propagations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zaman, A. U., Hayee, M. I., & Katta, N. (2016). Traffic information system to deliver in-vehicle messages on predefined routes use of dedicated, short-range vehicle-to-vehicle communication. Transportation Research Record: Journal of the Transportation Research Board, 2559, 73–80.

    Article  Google Scholar 

  2. Maurer, J., Fügen, T., Schäfer, T., & Wiesbeck, W. (2004). A new inter-vehicle communications (IVC) channel model. In Proceedings of 60th IEEE Vehicular Technology Confernce, VTC’04-Fall (Vol. 1, pp. 9–13), Los Angeles, CA, USA.

  3. Paier, A., Karedal, J., Czink, N., Hofstetter, H., Dumard, C., Zemen, T., Tufvesson, F., Molisch, A. F., & Mecklenbraucker, C. F. (2007). Car-to-car radio channel measurements at 5 GHz: Pathloss, power delay profile, and Doppler delay spectra. In Proceedings of 4th IEEE international symposium on wireless communication systems, ISWCS 2007 (pp. 224–228), Trondheim, Norway.

  4. Ghoraishi, M., Ching, G., & Lertsirisopon, N. (2009). Polar directional characteristics of the urban mobile propagation channel at 2.2 GHz. In 3rd European conference on antennas and propagation (pp. 23–27, 892–896), Berlin, Germany.

  5. Wang, C. X., Cheng, X., & Laurenson, D. I. (2009). Vehicle-to-vehicle channel modeling and measurements: Recent advances and future challenges. IEEE Communcations Magazine, 47(11), 96–103.

    Article  Google Scholar 

  6. Pätzold, M., Hogstad, B. O., & Youssef, N. (2008). Modeling, analysis, and simulation of MIMO mobile-to-mobile fading channels. IEEE Transactions on Wireless Communications, 7(2), 510–520.

    Article  Google Scholar 

  7. Jiang, H., & Zhou, J. (2014). Indoor wireless propagation under line of sight and no line of sight comprehensive channel modeling. Acta Physica Sinica, 63, 48702.

    Google Scholar 

  8. Xiao, H. L., Ou, Y. S., & Nie, Z. P. (2009). The spatial degrees of freedom of MIMO quantum channels. Acta Physica Sinica, 58, 6779.

    MathSciNet  MATH  Google Scholar 

  9. Shiu, D.-S., Foschini, G. J., Gans, M. J., & Kahn, J. M. (2000). Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communications, 48(3), 502–513.

    Article  Google Scholar 

  10. Pätzold, M., & Hogstad, B. O. (2004). A space-time channel simulator for MIMO channels based on the geometrical one-ring scattering model. In Proceedings of 60th IEEE semiannual vehicular technology conference, VTC 2004-Fall (Vol. 1, pp. 144–149), Los Angeles, CA, USA.

  11. Patel, C. S., Stuber, G. L., & Pratt, T. G. (2003). Simulation of Rayleigh faded mobile-to-mobile communication channels. In Proceedings of 58th IEEE Vehicular Technology Conference, VTC’03-Fall (pp. 163–167), Orlando, FL, USA.

  12. Pätzold, M., & Hogstad, B. O. (2008). A wideband MIMO channel model derived from the geometrical elliptical scattering model. Wireless Communications and Mobile Computing, 8, 597–605.

    Article  Google Scholar 

  13. Abramowitz, B. M., & Stegun, I. A. (1984). Pocketbook of mathematical functions. Frankfurt/Main: Harri Deutsch.

    MATH  Google Scholar 

  14. Avazov, N. & Pätzold, M. (2011). IEEE international conference on advanced technologies for communications, ATC (pp. 224–230), Danang, Vietnam, 2–4 August.

  15. Zhou, J., Yao, Y. L., & Shen, X. Y. (2016). An electromagnetic street scattering channel model for outdoor vehicular-to-vehicular communication systems. Acta Physica Sinica, 65, 140501.

    Google Scholar 

  16. Chelli, A., & Pätzold, M. (2007). A MIMO mobile-to-mobile channel model derived from a geometric street scattering model. In Proceedings of 4th IEEE international symposium on wireless communication systems, ISWCS 2007 (pp. 792–797), Trondheim, Norway.

  17. Chen, W., & He, Z. Y. (2008). A street reference model of MIMO vehicle-to-vehicle fading channel. In Proceedings of 3rd IEEE conference on industrial electronics and applications, ICIEA 2008 (pp. 275–278), Singapore.

  18. Hong, C., & Byeong, W. K. (2015). Performance improvement of collision warning system on curved road based on intervehicle communication. In Hindawi Publishing Corporation Mathematical Problems in Engineering (Vol. 1–7).

  19. Zajic, A. G., Stuber, G. L., Pratt, T. G., & Nguyen, S. (2008). Statistical modeling and experimental verification of wideband MIMO mobile-to-mobile channels in highway environments. In Proceedings of 19th IEEE international symposium on personal, indoor and mobile radio communications, PIMRC, Cannes, France.

  20. Gao, X., Edfors, O., & Rusek, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications, 14(7), 3899–3911.

    Article  Google Scholar 

  21. Payami, S., & Tufvesson, F. (2012). Channel measurements and analysis for very large array systems at 2.6 GHz. In 6th European conference on antennas and propagation (EUCAP) (pp. 433–437), Prague, Czech Republic.

  22. Yong, S. K., & Thompson, J. S. (2005). Three Dimensional spatial fading correlation models for compact MIMO receivers. IEEE Transactions on Communications, 4(6), 2856–2869.

    Google Scholar 

  23. Mammasis, K., Stewart, R. W., & Thompson, J. S. (2009). Spatial fading correlation model using mixtures of von mises fisher distributions. IEEE Transactions on Wireless Communications, 8(4), 2046–2055.

    Article  Google Scholar 

  24. He, Z. Y., Chen, W., Zhou, W., Pätzold, M., & Ali, C. (2009). Modeling of MIMO vehicle-to-vehicle fading channels in T-junction scattering environments. In European conference on antennas & propagation (pp. 652–656).

  25. Gutierrez, C. A., & Pätzold, M. (2013). The correlation and ergodic properties of the squared envelope of SOC rayleigh fading channel simulators. IEEE Transactions on Wireless Communications, 68(3), 963–979.

    Google Scholar 

  26. Tsalolihin, E., Bilik, I., & Blaunstein, N. (2011). MIMO capacity in space and time domain for various urban environments. In EUCAP (pp. 2192–2196).

  27. Alsehaili, M., Noghanian, S. R., & Sebak, A. (2010). Angle-of-arrival statistics of a three-dimensional geometrical scattering channel model for indoor and outdoor propagation environments. IEEE Antennas and Wireless Propagation Letters, 9(109), 946–949.

    Article  Google Scholar 

  28. Tan, I., Wanbin, T., Laberteaux, K., & Bahai, A. (2008). Measurement and analysis of wireless channel impairments in DSRC vehicular communications. IEEE International Conference on Communications, 106, 4882–4888.

    Google Scholar 

  29. Ghoraishi, M., Takada, J. I., & Imai, T. (2006). A pseudo-geometrical channel model for dense urban line-of-sight street microcell. In IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Commun, PIMRC'06 (pp. 1–5), 11–14 September.

  30. Zhou, W., Pätzold, M., Chen, W., & He, Z. Y. (2010). A simulation model for wideband MIMO vehicle-to-vehicle fading channels in T-junction propagation environments. In Ursi international symposium on electromagnetic theory, EMTS (pp. 223–226), 16–19 August.

  31. Zhou, J., Cao, Z., & Kikuchi, H. (2014). Asymmetric geometrical-based statistical channel model and its multiple-input and multiple-output capacity. IET Communications, 8(1), 1–10.

    Article  Google Scholar 

  32. Fu, Y., Wang, C. X., & Ghazal, A. (2016). Performance investigation of spatial modulation systems under non-stationary wideband high-speed train channel models. IEEE Transactions on Wireless Communications, 15(9), 6163–6173.

    Article  Google Scholar 

  33. Patcharamaneepakorn, P. Y., Wu, S. B., & Wang, C. X. (2016). Spectral, energy, and economic efficiency of 5G multicell massive MIMO systems with generalized spatial modulation. IEEE Transactions on Vehicular Technology, 65(12), 9715–9731.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Professor Fumiyuki Adachi, Department of Electrical and Electronic Engineering, Tohoku University, Japan, for his help on this paper. The research was supported by the Scientific & Technological Support Project of Jiangsu University (No. 14KJA510001), the National Nature Science Foundation of China (No. 61471153) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou.

Appendix

Appendix

In this appendix, we provide the final results for the space cross-correlation function, the space–time cross-correlation functions, the temporal auto-correlation function, the frequency cross-correlation function, respectively.

$$\begin{aligned} r_{{pq,p^{{\prime }} q^{{\prime }} }} \left( {\delta_{T} ,\delta_{R} } \right) & = r_{{pq,p^{{\prime }} q^{{\prime }} }} \left( {\delta_{T} ,\delta_{R} ,0,0} \right) = \eta_{SBT} \int\limits_{{\alpha_{\hbox{min} }^{T} }}^{{\alpha_{\hbox{max} }^{T} }} {g^{T} p_{{\alpha^{T} }} \left( {\alpha^{T} } \right)} d\alpha^{T} \\ & \quad + \eta_{SBR} \int\limits_{{\alpha_{\hbox{min} }^{R} }}^{{\alpha_{\hbox{max} }^{R} }} {g^{R} p_{{\alpha^{R} }} \left( {\alpha^{R} } \right)} d\alpha^{R} \\ & \quad + \eta_{DB} \int\limits_{{\alpha_{\hbox{min} }^{T} }}^{{\alpha_{\hbox{max} }^{T} }} {\int\limits_{{\beta_{\hbox{min} }^{R} }}^{{\beta_{\hbox{max} }^{R} }} {g^{TR} p_{{\alpha^{T} }} \left( {\alpha^{T} } \right)} } p_{{\beta^{R} }} \left( {\beta^{R} } \right)d\beta^{R} d\alpha^{T} \\ \end{aligned}$$
(34)
$$\begin{aligned} r_{T} \left( {\delta_{T} ,\tau } \right) & = r_{{pq,p^{{\prime }} q^{{\prime }} }} \left( {\delta_{T} ,0,0,\tau } \right) = \eta_{SBT} \int\limits_{{\alpha_{\hbox{min} }^{T} }}^{{\alpha_{\hbox{max} }^{T} }} {e^{{j\frac{2\pi }{\lambda }\left[ {\left( {p - p^{{\prime }} } \right)\delta_{T} \cos \left( {\alpha^{T} - \gamma_{T} } \right)} \right]}} e^{{j\left( {f_{m}^{T} + f_{m}^{R} } \right)\tau }} p_{{\alpha^{T} }} \left( {\alpha^{T} } \right)} d\alpha^{T} \\ & \quad + \eta_{SBR} \int\limits_{{\alpha_{\hbox{min} }^{R} }}^{{\alpha_{\hbox{max} }^{R} }} {e^{{j\frac{2\pi }{\lambda }\left[ {\left( {p - p^{{\prime }} } \right)\delta_{T} \cos \left( {\alpha^{R} - \gamma_{T} } \right)} \right]}} e^{{j\left( {f_{n}^{T} + f_{n}^{R} } \right)\tau }} p_{{\alpha^{R} }} \left( {\alpha^{R} } \right)} d\alpha^{R} \\ & \quad + \eta_{DB} \int\limits_{{\alpha_{\hbox{min} }^{T} }}^{{\alpha_{\hbox{max} }^{T} }} {\int\limits_{{\beta_{\hbox{min} }^{R} }}^{{\beta_{\hbox{max} }^{R} }} {e^{{j\frac{2\pi }{\lambda }\left[ {\left( {p - p^{{\prime }} } \right)\delta_{T} \cos \left( {\alpha^{T} - \gamma_{T} } \right)} \right]}} e^{{j\left( {f_{m}^{T} + f_{n}^{R} } \right)\tau }} p_{{\alpha^{T} }} \left( {\alpha^{T} } \right)} } p_{{\beta^{R} }} \left( {\beta^{R} } \right)d\beta^{R} d\alpha^{T} \\ \end{aligned}$$
(35)
$$\begin{aligned} r_{R} \left( {\delta_{R} ,\tau } \right) & = r_{{pq,p^{{\prime }} q^{{\prime }} }} \left( {0,\delta_{R} ,0,\tau } \right) = \eta_{SBT} \int\limits_{{\alpha_{\hbox{min} }^{T} }}^{{\alpha_{\hbox{max} }^{T} }} {e^{{j\frac{2\pi }{\lambda }\left[ {\left( {q - q^{{\prime }} } \right)\delta_{R} \cos \left( {\beta^{T} - \gamma_{R} } \right)} \right]}} e^{{j\left( {f_{m}^{T} + f_{m}^{R} } \right)\tau }} p_{{\alpha^{T} }} \left( {\alpha^{T} } \right)} d\alpha^{T} \\ & \quad + \eta_{SBR} \int\limits_{{\alpha_{\hbox{min} }^{R} }}^{{\alpha_{\hbox{max} }^{R} }} {e^{{j\frac{2\pi }{\lambda }\left[ {\left( {q - q^{{\prime }} } \right)\delta_{R} \cos \left( {\beta^{R} - \gamma_{R} } \right)} \right]}} e^{{j\left( {f_{n}^{T} + f_{n}^{R} } \right)\tau }} p_{{\alpha^{R} }} \left( {\alpha^{R} } \right)} d\alpha^{R} \\ & \quad + \eta_{DB} \int\limits_{{\alpha_{\hbox{min} }^{T} }}^{{\alpha_{\hbox{max} }^{T} }} {\int\limits_{{\beta_{\hbox{min} }^{R} }}^{{\beta_{\hbox{max} }^{R} }} {e^{{j\frac{2\pi }{\lambda }\left[ {\left( {q - q^{{\prime }} } \right)\delta_{R} \cos \left( {\beta^{R} - \gamma_{R} } \right)} \right]}} e^{{j\left( {f_{m}^{T} + f_{n}^{R} } \right)\tau }} p_{{\alpha^{T} }} \left( {\alpha^{T} } \right)} } p_{{\beta^{R} }} \left( {\beta^{R} } \right)d\beta^{R} d\alpha^{T} \\ \end{aligned}$$
(36)
$$\begin{aligned} r_{pq} \left( \tau \right) & = r_{{pq,p^{{\prime }} q^{{\prime }} }} \left( {0,0,0,\tau } \right) = \eta_{SBT} \int\limits_{{\alpha_{\hbox{min} }^{T} }}^{{\alpha_{\hbox{max} }^{T} }} {e^{{j\left( {f_{m}^{T} + f_{m}^{R} } \right)\tau }} p_{{\alpha^{T} }} \left( {\alpha^{T} } \right)} d\alpha^{T} \\ & \quad + \eta_{SBR} \int\limits_{{\alpha_{\hbox{min} }^{R} }}^{{\alpha_{\hbox{max} }^{R} }} {e^{{j\left( {f_{n}^{T} + f_{n}^{R} } \right)\tau }} p_{{\alpha^{R} }} \left( {\alpha^{R} } \right)} d\alpha^{R} \\ & \quad + \eta_{DB} \int\limits_{{\alpha_{\hbox{min} }^{T} }}^{{\alpha_{\hbox{max} }^{T} }} {\int\limits_{{\beta_{\hbox{min} }^{R} }}^{{\beta_{\hbox{max} }^{R} }} {e^{{j\left( {f_{m}^{T} + f_{n}^{R} } \right)\tau }} p_{{\alpha^{T} }} \left( {\alpha^{T} } \right)} } p_{{\beta^{R} }} \left( {\beta^{R} } \right)d\beta^{R} d\alpha^{T} \\ \end{aligned}$$
(37)
$$\begin{aligned} r_{{\tau^{{\prime }} }} \left( {\nu^{{\prime }} } \right) & = r_{{pq,p^{{\prime }} q^{{\prime }} }} \left( {0,0,\nu^{{\prime }} ,0} \right) = \eta_{SBT} \int\limits_{{\alpha_{\hbox{min} }^{T} }}^{{\alpha_{\hbox{max} }^{T} }} {e^{{ - 2\pi j\nu^{{\prime }} \tau_{pmq}^{{\prime }} }} p_{{\alpha^{T} }} \left( {\alpha^{T} } \right)} d\alpha^{T} \\ & \quad + \eta_{SBR} \int\limits_{{\alpha_{\hbox{min} }^{R} }}^{{\alpha_{\hbox{max} }^{R} }} {e^{{ - 2\pi j\nu^{{\prime }} \tau_{pnq}^{{\prime }} }} p_{{\alpha^{R} }} \left( {\alpha^{R} } \right)} d\alpha^{R} \\ & \quad + \eta_{DB} \int\limits_{{\alpha_{\hbox{min} }^{T} }}^{{\alpha_{\hbox{max} }^{T} }} {\int\limits_{{\beta_{\hbox{min} }^{R} }}^{{\beta_{\hbox{max} }^{R} }} {e^{{ - 2\pi j\nu^{{\prime }} \tau \tau_{pmnq}^{{\prime }} }} p_{{\alpha^{T} }} \left( {\alpha^{T} } \right)} } p_{{\beta^{R} }} \left( {\beta^{R} } \right)d\beta^{R} d\alpha^{T} \\ \end{aligned}$$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, D., Shao, G., Zhou, J. et al. A Novel MIMO Channel Model for Vehicle-to-Vehicle Communication System on Narrow Curved-Road Environment. Wireless Pers Commun 98, 3409–3430 (2018). https://doi.org/10.1007/s11277-017-5021-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5021-6

Keywords

Navigation