Skip to main content
Log in

A Three-Dimensional Geometrical Scattering Model for Cellular Communication Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Geometrical channel modeling has been one of the hot topics in wireless communication systems since the last two decades. It has been used for variety of scattering model characterizations like spatial and temporal statistical behavior of the channel, level crossing rate of the fading channel along with the analysis of average fade duration etc. In this paper, we propose a three dimensional (3D) semi-ellipsoid geometric scattering model for cellular mobile communication systems, where, elevated base station is considered in scattering free region while the mobile station is assumed to be surrounded by uniformly distributed scatterers in the proposed geometrical shape. Exploiting the proposed geometry, expressions for the joint and marginal probability density functions for angle-of-arrival and time-of-arrival in azimuth and elevation planes are derived. This model is suitable for macro-cellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baltzis, K. (2008). On the geometric modeling of the uplink channel in a cellular system. Journal of Engineering Science & Technology Review, 1(1).

  2. Baltzis, K. B., & Sahalos, J. N. (2009). A simple 3D geometric channel model for macrocell mobile communications. Wireless Personal Communications, 51(2), 329–347.

    Article  Google Scholar 

  3. Ertel, R. B., & Reed, J. H. (1999). Angle and time of arrival statistics for circular and elliptical scattering models. IEEE Journal on Selected Areas in Communications, 17(11), 1829–1840.

    Article  Google Scholar 

  4. Jaafar, I., Boujemâa, H., & Siala, M. (2008). Angle and time of arrival statistics for hollow-disc and elliptical scattering models. In Proceedings on 2nd international conference on signals, circuits and systems (pp. 1–4).

  5. Janaswamy, R. (2002). Angle and time of arrival statistics for the gaussian scatter density model. IEEE Transactions on Wireless Communications, 1(3), 488–497.

    Article  Google Scholar 

  6. Khan, N. M. (2006). Modeling and characterization of multipath fading channels in cellular mobile communication systems. Ph.D. thesis, University of New South Wales.

  7. Liberti, J. C., & Rappaport, T. S (1996). A geometrically based model for line-of-sight multipath radio channels. In Proceedings on IEEE vehicular technology conference (pp. 844–848).

  8. Lötter, M. P., & Rooyen, P. V. (1999). Modeling spatial aspects of cellular CDMA/SDMA systems. IEEE Communications Letters, 3(5), 128–131.

    Article  Google Scholar 

  9. Petrus, P., Reed, J. H., & Rappaport, T. S. (2002). Geometrical-based statistical macrocell channel model for mobile environments. IEEE Transactions on Communications, 50(3), 495–502.

    Article  Google Scholar 

  10. Piechocki, R. J., Tsoulos, G. V., & McGeehan, J. P. (1998). Simple general formula for PDF of angle of arrival in large cell operational environments. Electronics Letters, 34(18), 1784–1785.

    Article  Google Scholar 

  11. Baltzis, K. (2011). A generalized elliptical scattering model for the spatial characteristics of mobile channels. Wireless Personal Communications, 67(4), 971–984.

    Article  Google Scholar 

  12. Baltzis, K. (2011). A simplified geometric channel model for mobile-to-mobile communications. Radioengineering, 20(4), 961.

    Google Scholar 

  13. Bilal, A., Riaz, M., & Wani, M. Y. (2016). Mobile-to-mobile gaussian scattering channel model. Science International, 28(4), 3487–3491.

    Google Scholar 

  14. Paul, B., & Bhattacharjee, R. (2010). Time and angle of arrival statistics of mobile-to-mobile communication channel employing dual annular strip model. IETE Journal of Research, 56(6), 327.

    Article  Google Scholar 

  15. Paul, B., Hasan, A., Madheshiya, H., & Bhattacharjee, R. (2009). Time and angle of arrival statistics of mobile-to-mobile communication channel employing circular scattering model. IETE Journal of Research, 55(6), 275.

    Article  Google Scholar 

  16. Wani, M. Y., Riaz, M., & Khan, N. M. (2016). Modeling and characterization of MIMO mobile-to-mobile communication channels using elliptical scattering geometry. Wireless Personal Communications, 91(2), 509–524.

    Article  Google Scholar 

  17. Janaswamy, R. (2002). Angle of arrival statistics for a 3D spheroid model. IEEE Transactions on Vehicular Technology, 51(5), 1242–1247.

    Article  Google Scholar 

  18. Nawaz, S. J., Khan, N. M., Patwary, M. N., & Moniri, M. (2011). Effect of directional antenna on the Doppler spectrum in 3-d mobile radio propagation environment. IEEE Transactions on Vehicular Technology, 60(7), 2895–2903.

    Article  Google Scholar 

  19. Nawaz, S. J., Qureshi, B. H., & Khan, N. M. (2010). A generalized 3 D scattering model for a macrocell environment with a directional antenna at the BS. IEEE Transactions on Vehicular Technology, 59(7), 3193–3204. https://doi.org/10.1109/TVT.2010.2050015.

    Article  Google Scholar 

  20. Olenko, A. Y., Wong, K. T., Qasmi, S. A., & Ahmadi-Shokouh, J. (2006). Analytically derived uplink/downlink ToA and 2D-DoA distributions with scatterers in a 3D hemispheroid surrounding the mobile. IEEE Transactions on Antennas and Propagation, 54(9), 2446–2454.

    Article  Google Scholar 

  21. Riaz, M., Khan, N. M., & Nawaz, S. J. (2015). A generalized 3D scattering channel model for spatiotemporal statistics in mobile-to-mobile communication environment. IEEE Transactions on Vehicular Technology, 64(10), 4399–4410.

    Article  Google Scholar 

  22. Riaz, M., Nawaz, S. J., & Khan, N. M. (2013). 3D ellipsoidal model for mobile-to-mobile radio propagation environments. Wireless Personal Communications, 72(4), 2465–2479.

    Article  Google Scholar 

  23. Zajić, A., & Stüber, G. (2008). Three-dimensional modeling, simulation, and capacity analysis of space-time correlated mobile-to-mobile channels. IEEE Transactions on Vehicular Technology, 57(4), 2042–2054. https://doi.org/10.1109/TVT.2007.912150.

    Article  Google Scholar 

  24. Wani, M. Y., & Khan, N. M. (2017). Characterization of 3D elliptical spatial channel model for MIMO mobile-to-mobile communication environment. Wireless Personal Communications, 96(4), 6325–6344.

    Article  Google Scholar 

  25. Nawaz, S. J., Riaz, M., & Khan, N. M. (2015). Temporal analysis of a 3D ellipsoid channel model for the vehicle-to-vehicle communication environments. Wireless Personal Commununications, 82(3), 1337–1350.

    Article  Google Scholar 

  26. Walikar, G. A., & Biradar, R. C. (2017). A survey on hybrid routing mechanisms in mobile ad hoc networks. Journal of Network and Computer Applications, 77, 48–63.

    Article  Google Scholar 

  27. Pedersen, K. I., Mogensen, P. E., & Fleury, B. H. (2000). A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments. IEEE Transactions on Vehicular Technology, 49(2), 437–447.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Riaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, M., Khan, M.M. & Ullah, Z. A Three-Dimensional Geometrical Scattering Model for Cellular Communication Environment. Wireless Pers Commun 98, 3443–3454 (2018). https://doi.org/10.1007/s11277-017-5023-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5023-4

Keywords

Navigation