Skip to main content

Advertisement

Log in

Enhancing Coverage Using Weight Based Clustering in Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Energy conservation in wireless sensor networks (WSNs) is a fundamental issue. For certain surveillance applications in WSN, coverage lifetime is an important issue and this is related to energy consumption significantly. In order to handle these two interlinked aspects in WSN, a new scheme named Weight based Coverage Enhancing Protocol (WCEP) has been introduced. The WCEP aims to obtain longer full coverage and better network life time. The WCEP is based on assigning different weight values to certain governing parameters which are residual energy, overlapping degree, node density and degree of sensor node. These governing parameters affect the energy and coverage aspects predominantly. Further, these four different parameters are prime elements in cluster formation process and node scheduling mechanisms. The weight values help in selection of an optimal group of Cluster Heads and Cluster Members, which result in enhancement of complete coverage lifetime. The simulation results indicate that WCEP performs better in terms of energy consumption also. The enhancement of value 24% in full coverage lifetime has been obtained as compared to established existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dargie, W., & Christian, P. (2010). Motivation for a network of wireless sensor nodes. In U. Xuemin & Y. Pan (Eds.), Fundamentals of wireless sensor networks theory and practice. Willey series on wireless communications and mobile computing (1st ed., pp. 17–32). New York: Willey.

    Google Scholar 

  2. Basagni, S., Naderi, M. Y., Petrioli, C., & Spenza, D. (2013). Wireless sensor networks with energy harvesting. In Mobile ad hoc networking: Cutting edge directions (2nd edn, pp. 1–36). Retrieved from http://senseslab.di.uniroma1.it/administrator/components/com_jresearch/files/publications/Wireless_Sensor_Networks_with_.pdf

  3. Fafoutis, X., Vuckovic, D., Mauro, A. Di, Dragoni, N., & Madsen, J. (2012). Energy-harvesting wireless sensor networks. In Proceedings of the 9th European conference on wireless sensor network (EWSN) (pp. 84–85).

  4. Rawat, P., Singh, K. D., Chaouchi, H., & Bonnin, J. M. (2014). Wireless sensor networks: A survey on recent developments and potential synergies. Journal of Supercomputing, 68(1), 1–48. https://doi.org/10.1007/s11227-013-1021-9.

    Article  Google Scholar 

  5. Joshi, G., Nam, S., & Kim, S. (2013). Cognitive radio wireless sensor networks: Applications, challenges and research trends. Sensors. https://doi.org/10.3390/S130911196.

    Google Scholar 

  6. Vijay, G., Bdira, E. B. A., & Ibnkahla, M. (2011). Cognition in wireless sensor networks: A perspective. IEEE Sensors Journal, 11(3), 582–592. https://doi.org/10.1109/JSEN.2010.2052033.

    Article  Google Scholar 

  7. Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568. https://doi.org/10.1016/j.adhoc.2008.06.003.

    Article  Google Scholar 

  8. Mamalis, B., Gavalas, D., Konstantopoulos, C., & Pantziou, G. (2009). Clustering in wireless sensor networks. In Y. Zhang, L. T. Yang, & J. Chen (Eds.), RFID and sensor networks: Architectures, protocols, security, and integrations (pp. 323–354). New York: CRC Press, Taylor and Francis Group.

    Google Scholar 

  9. Wang, Y., Zhang, Y., Liu, J., & Bhandari, R. (2015). Coverage, connectivity and deployment in wireless sensor networks. In S. Patnaik, X. Li, Y. M. Yang (Eds.), Recent development in wireless sensor and adhoc networks. Signals and communication technology (pp. 25–44). New Delhi: Springer. https://doi.org/10.1007/978-81-322-2129-6_2.

    Google Scholar 

  10. Soro, S., & Heinzelman, W. B. (2009). Cluster head election techniques for coverage preservation in wireless sensor networks. Ad Hoc Networks, 7(5), 955–972. https://doi.org/10.1016/j.adhoc.2008.08.006.

    Article  Google Scholar 

  11. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670. https://doi.org/10.1109/TWC.2002.804190.

    Article  Google Scholar 

  12. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad-hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 1–36. https://doi.org/10.1109/TMC.2004.41.

    Article  Google Scholar 

  13. Saeidmanesh, M., Hajimohammadi, M., & Movaghar, A. (2009). Energy and Distance Based Clustering: An Energy Efficient Clustering Method for Wireless Sensor Networks. In World Academy of Science, Engineering and Technology, International Science Index 31, International Journal of Computer, Electrical, Automation, Control and Information Engineering (2009), 3(7), 1818-1822. http://waset.org/publications/4973.

  14. Lee, K., Lee, J., Lee, H., & Shin, Y. (2010). A density and distance based cluster head selection algorithm in sensor networks. In IEEE international conference on advanced communication technology (ICACT) (Vol. 1, pp. 162–165). IEEE.

  15. Gupta, S. K. (2012). Node degree based clustering for WSN. International Journal of Computer Applications, 40(16), 49–55.

    Google Scholar 

  16. Ding, P., Holliday, J., & Celik, A. (2005). Distributed energy-efficient hierarchical clustering for wireless sensor networks. In V. K. Prasanna, S. S. Iyengar, & P. Spirakis (Eds.), IEEE international conference on distributed computing in sensor systems (DCOSS) (Vol. 356, pp. 322–339). Berlin: Springer. https://doi.org/10.1007/11502593_25.

    Chapter  Google Scholar 

  17. Kim, K. T., & Youn, H. Y. (2005). PEACH: Proxy-enable adaptive clustering hierarchy for wireless sensor networks. In International conference on wireless networks, ICWN, 2005 (pp. 52–56).

  18. Soro, S., & Heinzelman, W. B. (2005). Prolonging the lifetime of wireless sensor networks via unequal clustering. In International parallel and distributed processing symposium, ACM (Vol. 13, pp. 236–243). 10.1109/IPDPS.2005.365

  19. Ye, M., Li, C., Chen, G., & Wu, J. (2006). An energy efficient clustering scheme in wireless sensor networks. Ad Hoc and Wireless Sensor Networks, 3, 99–119.

    Google Scholar 

  20. Ming, L., Jian-Nong, C., Gui-Hai, C., Li-Jun, C., Xiao-Min, W., & Hai-Gang, G. (2007). EADEEG: An energy-aware data gathering protocol for wireless sensor networks. Distributed Sensor Networks, 18(5), 1092–1109. https://doi.org/10.1360/jos181092.

    Google Scholar 

  21. Jin, Y., Wang, L., Kim, Y., & Yang, X. Z. (2008). Energy efficient non-uniform clustering division scheme in wireless sensor networks. Wireless Personal Communications, 45(1), 31–43. https://doi.org/10.1007/s11277-007-9370-4.

    Article  Google Scholar 

  22. Jianbo, X., Yong, H., & Renfa, L. (2008). An energy-aware distributed clustering algorithm in wireless sensor networks. In IEEE international conference of computer science and software engineering (Vol. 3, pp. 528–531). IEEE. https://doi.org/10.1109/CSSE.2008.782.

  23. Chen, G., Li, C., Ye, M., & Wu, J. (2009). An unequal cluster-based routing protocol in wireless sensor networks. Wireless Networks, 15(2), 193–207. https://doi.org/10.1007/s11276-007-0035-8.

    Article  Google Scholar 

  24. Zytoune, O., El Aroussi, M., & Aboutajdine, D. (2009). A uniform balancing energy routing protocol for wireless sensor networks. Wireless Personal Communications, 55(2), 147–161. https://doi.org/10.1007/s11277-009-9791-3.

    Article  Google Scholar 

  25. Yu, J., Qi, Y., & Wang, G. (2011). An energy-driven unequal clustering protocol for heterogeneous wireless sensor networks. Journal of Control Theory Application, 9(1), 133–139. https://doi.org/10.1007/s11768-011-0232-y.

    Article  MathSciNet  Google Scholar 

  26. Liao, Y., Qi, H., & Li, W. (2013). Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sensors, 13(5), 1498–1506. https://doi.org/10.1109/JSEN.2012.2227704.

    Article  Google Scholar 

  27. Dohare, U., Lobiyal, D. K., & Kumar, S. (2014). Energy balanced model for lifetime maximization in randomly distributed wireless sensor networks. Wireless Personal Communications, 78(1), 407–428. https://doi.org/10.1007/s11277-014-1759-2.

    Article  Google Scholar 

  28. Kim, H.-Y., & Kim, J. (2015). An energy-efficient balancing scheme in wireless sensor networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-015-3154-z.

    Google Scholar 

  29. Tian, D., Avenue, K. E., & Georganas, N. D. (2002). A coverage-preserving node scheduling scheme for large wireless sensor networks. In Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications,WSNA '02 (pp. 32–41). Atlanta. https://doi.org/10.1145/570738.570744.

  30. Ye, F., Zhong, G., Cheng, J., Lu, S., & Zhang, L. (2003). PEAS: A robust energy conserving protocol for long-lived sensor networks. In IEEE international conference on distributed computing systems (pp. 28–37). IEEE. 10.1109/ICDCS.2003.1203449

  31. Cardei, M., & Du, D. (2005). Improving wireless sensor network lifetime through power. Wireless Networks, 11(3), 333–340.

    Article  Google Scholar 

  32. Li, D., & Liu, H. (2009). Sensor Coverage in Wireless Sensor Networks. In Wireless Networks: Research, Technology and Applications, 3–31.

  33. Wang, B., Lim, H. B., & Ma, D. (2012). A coverage-aware clustering protocol for wireless sensor networks. Computer Networks, 56(5), 1599–1611. https://doi.org/10.1016/j.comnet.2012.01.016.

    Article  Google Scholar 

  34. Liu, Z., Zheng, Q., Xue, L., & Guan, X. (2012). A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems, 28(5), 780–790. https://doi.org/10.1016/j.future.2011.04.019.

    Article  Google Scholar 

  35. Tao, Y., Zhang, Y., & Ji, Y. (2013). Flow-balanced Routing for Multi-hop Clustered Wireless Sensor Networks. Ad Hoc Networks, 11(1), 541–554. https://doi.org/10.1016/j.adhoc.2012.08.001.

    Article  Google Scholar 

  36. Torkestani, J. A. (2013). An Adaptive Energy-Efficient Area Coverage Algorithm for Wireless Sensor Networks. Ad Hoc Networks, 11(6), 1655–1666. https://doi.org/10.1016/j.adhoc.2013.03.002.

    Article  Google Scholar 

  37. Mohamadi, H., Ismail, A. S., & Salleh, S. (2014). Solving target coverage problem using cover sets in wireless sensor networks based on learning automata. Wireless Personal Communications, 75(1), 447–463. https://doi.org/10.1007/s11277-013-1371-x.

    Article  Google Scholar 

  38. Gu, X., Yu, J., Yu, D., Wang, G., & Lv, Y. (2014). ECDC: An energy and coverage-aware distributed clustering protocol for wireless sensor networks. Computers & Electrical Engineering, 40(2), 384–398. https://doi.org/10.1016/j.compeleceng.2013.08.003.

    Article  Google Scholar 

  39. Mazumdar, N., & Om, H. (2015). Coverage-aware Unequal Clustering Algorithm for Wireless Sensor Networks. Procedia Computer Science, 57, 660–669. https://doi.org/10.1016/j.procs.2015.07.437.

    Article  Google Scholar 

  40. Amgoth, T., & Jana, P. K. (2015). Energy and Coverage-Aware Routing Algorithm for Wireless Sensor Networks. Wireless Personal Communications, 81(2), 531–545. https://doi.org/10.1007/s11277-014-2143-y.

    Article  Google Scholar 

  41. Enam, R. N., Ismat, N., & Farooq, F. (2016). Connectivity and Coverage Based Grid-Cluster Size Calculation in Wireless Sensor Networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-016-3901-9.

    Google Scholar 

  42. Shokouhi, A., & Farahnaz, R. (2017). A Novel Energy-Aware Target Tracking Method by Reducing Active Nodes in Wireless Sensor Networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-017-4013-x.

    Google Scholar 

  43. Handy, M. J., Haase, M., & Timmermann, D. (2002). Low Energy Adaptive Clustering Hierachy with Deterministic Cluster head Selection. In Fourth IEEE conference on mobile and wireless communications networks (pp. 368–372). Stockholm.

Download references

Acknowledgements

The authors would like to thank Dr. W. B. Heinzelman of Rochester University, New York, USA for helping in problem formulation. A.K. Sohal would like to thank Ministry of Human Resource Development (MHRD), India for providing funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandeep Kaur Sohal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohal, A.K., Sharma, A.K. & Sood, N. Enhancing Coverage Using Weight Based Clustering in Wireless Sensor Networks. Wireless Pers Commun 98, 3505–3526 (2018). https://doi.org/10.1007/s11277-017-5026-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5026-1

Keywords

Navigation