Skip to main content
Log in

A New Approach for Error Rate Analysis of Wide-Band DSSS-CDMA System with Imperfect Synchronization Under Jamming Attacks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Most of the researches on error rate analysis of direct sequence spread spectrum (DSSS-CDMA) systems assume that the synchronization is perfect. However, in practice, the synchronization is often imperfect due to various effects of channel parameters such as noise and fading. The degree of imperfection further increases due to jamming attacks. The present study, therefore, derives new expressions to compute the probability of error in DSSS-CDMA systems under imperfect synchronisation. It is assumed that the channel is wideband and is subjected to various jamming attacks. A new parameter, called as probability of successful synchronization, was introduced which includes the effects of both the probability of false alarm and detection under fast and slow jammers. Monte Carlo simulations were conducted in MATLAB to establish the validity of the derived mathematical expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Berber, S. (2014). Probability of error derivatives for binary and chaos-based cdma systems in wide-band channels. IEEE Transactions on Wireless Communications, 13(10), 5596–5606. https://doi.org/10.1109/TWC.2014.2330301.

    Article  Google Scholar 

  2. Berber, S., & Feng, S. (2013). Theoretical modeling and simulation of a chaos-based physical layer for WSNS. International Journal of Communication, 7(2), 27–34.

    Google Scholar 

  3. Berber, S. M., & Gandhi, A. K. (2016). Inherent diversity combining techniques to mitigate frequency selective fading in chaos-based DSSS systems. Physical Communication, 19, 30–37. https://doi.org/10.1016/j.phycom.2016.02.001. http://www.sciencedirect.com/science/article/pii/S1874490716000240.

  4. Cimatti, G., Rovatti, R., & Setti, G. (2007). Chaos-based spreading in DS-UWB sensor networks increases available bit rate. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1327–1339. https://doi.org/10.1109/TCSI.2007.895378.

    Article  MathSciNet  MATH  Google Scholar 

  5. Corazza, Giovanni Emanuele, et al. Ds-cdma code acquisition in the presence of correlated fading-part i: Theoretical aspects. IEEE Transactions on Communications, 52(3), 518–518 (2004). https://doi.org/10.1109/TCOMM.2004.823562

  6. Duraisamy, P., & Nguyen, L. (2013). Self-encoded spread spectrum with iterative detection under pulsed-noise jamming. Journal of Communications and Networks, 15(3), 276–282. https://doi.org/10.1109/JCN.2013.000050.

    Article  Google Scholar 

  7. Jinn-Ja, C., & Lin-shan, L. (1994). An exact performance analysis of the clipped diversity combining receiver for FH/MFSK systems against a band multitone jammer. IEEE Transactions on Communications, 42(234), 700–710. https://doi.org/10.1109/TCOMM.1994.577099.

    Article  Google Scholar 

  8. Jleta, K. N., Ismail, M., & Hasbi, A. M. (2005). Performance of multi tone code division multiple access (MT-CDMA) in an AWGN channel and in presence of narrowband jamming. In Jointly held with the 2005 IEEE 7th Malaysia international conference on communication., 2005 13th IEEE international conference on networks, 2005, 2, (pp. 979–983). IEEE.

  9. Jun, T., & Stuber, G. L. (2005). Multicarrier spread spectrum system with constant envelope: Antijamming, jamming estimation, multiuser access. IEEE Transactions onWireless Communications, 4(4), 1527–1538. https://doi.org/10.1109/TWC.2005.850382.

    Article  Google Scholar 

  10. Kurian, A., Puthusserypady, S., & Htut, S. M. (2005). Performance enhancement of DS/CDMA system using chaotic complex spreading sequence. IEEE Transactions on Wireless Communications, 4(3), 984–989. https://doi.org/10.1109/TWC.2005.847028.

    Article  Google Scholar 

  11. Lancaster, H. O., & Seneta, E. (1969). Chi square distribution. Hoboken: Wiley.

    Google Scholar 

  12. Landolsi, M. (2007). Performance limits in DS-CDMA timing acquisition. IEEE Transactions on Wireless Communications, 6(9), 3248–3255. https://doi.org/10.1109/TWC.2007.06023.

    Article  Google Scholar 

  13. Lun, D., Zhu, H., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888. https://doi.org/10.1109/tsp.2009.2038412.

    Article  MathSciNet  Google Scholar 

  14. Matthias, W., Ivan, M., Jens, B. S., & Vincent, L. (2011). Short paper: Reactive jamming in wireless networks: How realistic is the threat? https://doi.org/10.1145/1998412.1998422.

  15. Myeongsu, H., Takki, Y., Jihyung, K., Kyungchul, K., Sungeun, L., Seungyoup, H., et al. (2008). OFDM channel estimation with jammed pilot detector under narrow-band jamming. IEEE Transactions on Vehicular Technology, 57(3), 1934–1939. https://doi.org/10.1109/TVT.2007.907314.

    Article  Google Scholar 

  16. Nikjah, R., & Beaulieu, N. C. (2008). On antijamming in general CDMA systems-part i: Multiuser capacity analysis. IEEE Transactions on Wireless Communications, 7(5), 1646–1655. https://doi.org/10.1109/TWC.2008.060626.

    Article  Google Scholar 

  17. Raju, K., Ristaniemi, T., Karhunen, J., & Oja, E. (2006). Jammer suppression in DS-CDMA arrays using independent component analysis. IEEE Transactions on Wireless Communications, 5(1), 77–82. https://doi.org/10.1109/TWC.2006.1576531.

    Article  Google Scholar 

  18. Sanguinetti, L., Morelli, M., & Poor, H. V. (2011). BICM decoding of jammed OFDM transmissions using the EM algorithm. IEEE Transactions on Wireless Communications, 10(9), 2800–2806. https://doi.org/10.1109/twc.2011.062911.101448.

    Article  Google Scholar 

  19. Schwartz, M. (2005). Mobile wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

  20. Shahriar, C., La Pan, M., Lichtman, M., Clancy, T. C., McGwier, R., Tandon, R., et al. (2015). Phy-layer resiliency in OFDM communications: A tutorial. IEEE Communications Surveys and Tutorials, 17(1), 292–314. https://doi.org/10.1109/COMST.2014.2349883.

    Article  Google Scholar 

  21. Shim, J., Amde, M., & Yun, K., Cruz, R. (2007). Synchronization at low SINR in asynchronous direct-sequence spread-spectrum communications. In Second international conference on systems and networks communications, 2007. ICSNC 2007, (pp. 26–26). IEEE.

  22. Spuhler, M., Giustiniano, D., Lenders, V., Wilhelm, M., & Schmitt, J. B. (2014). Detection of reactive jamming in DSSS-based wireless communications. IEEE Transactions on Wireless Communications, 13(3), 1593–1603. https://doi.org/10.1109/TWC.2013.013014.131037.

    Article  Google Scholar 

  23. Sriyananda, M. G. S., Joutsensalo, J., & Hamalainen, T. (2012). Blind source separation for OFDM with filtering colored noise and jamming signal. Journal of Communications and Networks, 14(4), 410–417. https://doi.org/10.1109/JCN.2012.6292247.

    Article  Google Scholar 

  24. Tayebi, A., Berber, S., Swain, A. (2014). Performance analysis of chaos based WSNS under jamming attack. In 2014 International symposium on information theory and its applications (ISITA) (pp. 428–432).

  25. Tayebi, A., Berber, S., & Swain, A. Performance analysis of synchronization in chaotic DSSS-CDMA system under jamming attack. In N. Mastorakis (ed.) International conference on systems, control, signal processing and informatics. INASE.

  26. Tayebi, A., Berber, S., & Swain, A. (2013). Wireless sensor network attacks: An overview and critical analysis. In 2013 Seventh international conference on sensing technology (ICST), (pp. 97–102). https://doi.org/10.1109/ICSensT.2013.6727623.

  27. Tayebi, A., Berber, S., & Swain, A. (2016). Performance analysis of chaotic DSSS-CDMA synchronization under jamming attack. Circuits, Systems, and Signal Processing. https://doi.org/10.1007/s00034-016-0266-y.

  28. Tiloca, M., De Guglielmo, D., Dini, G., Anastasi, G. (2013). SAD-SJ: A self-adaptive decentralized solution against selective jamming attack in wireless sensor networks. In 2013 IEEE 18th conference on emerging technologies and factory automation (ETFA), (pp. 1–8). https://doi.org/10.1109/etfa.2013.6648037.

  29. Vali, R., Berber, S., & Sing Kiong, N. (2012). Accurate derivation of chaos-based acquisition performance in a fading channel. IEEE Transactions on Wireless Communications, 11(2), 722–731. https://doi.org/10.1109/twc.2011.120511.110306.

    Article  Google Scholar 

  30. Vali, R., Berber, S. M., & Nguang, S. K. (2010). Effect of rayleigh fading on non-coherent sequence synchronization for multi-user chaos based DS-CDMA. Signal Processing, 90(6), 1924–1939.

    Article  MATH  Google Scholar 

  31. Vali, R., Berber, S. M., & Sing Kiong, N. (2012). Analysis of chaos-based code tracking using chaotic correlation statistics. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(4), 796–805. https://doi.org/10.1109/TCSI.2011.2169885.

    Article  MathSciNet  Google Scholar 

  32. Won, S., & Hanzo, L. (2008). Non-coherent and differentially coherent code acquisition in mimo assisted DS-CDMA multi-path downlink scenarios. IEEE Transactions on Wireless Communications, 7(5), 1585–1593. https://doi.org/10.1109/TWC.2008.05847.

    Article  Google Scholar 

  33. Won, S., & Hanzo, L. (2009). Initial acquisition performance of the multiple receive antenna assisted DS-UWB downlink using search space reduction and iterative code phase estimation. IEEE Transactions on Wireless Communications, 8(1), 386–395. https://doi.org/10.1109/T-WC.2009.080062.

    Article  Google Scholar 

  34. Yassen, M. T. (2005). Chaos synchronization between two different chaotic systems using active control. Chaos, Solitons and Fractals, 23(1), 131–140. https://doi.org/10.1016/j.chaos.2004.03.038. http://www.sciencedirect.com/science/article/pii/S0960077904001894.

  35. Yee Wei, L., Hartel, P., den Hartog, J., & Havinga, P. (2005). Link-layer jamming attacks on S-MAC. In: Proceeedings of the Second European Workshop on Wireless Sensor Networks, 2005, (pp. 217–225). https://doi.org/10.1109/ewsn.2005.1462013.

  36. Yee Wei, L., Marimuthu, P., Van Lodewijk, H., Jeroen, D., Pieter, H., & Paul, H. (2009). Energy-efficient link-layer jamming attacks against wireless sensor network MAC protocols. ACM Transactions on Sensor Networks, 5(1), 1–38. https://doi.org/10.1145/1464420.1464426.

    Google Scholar 

  37. Yi-Sheng, S., Shih-Yu, C., Hsiao-Chun, W., Huang, S. C. H., & Hsiao-Hwa, C. (2011). Physical layer security in wireless networks: A tutorial. IEEE Wireless Communications, 18(2), 66–74. https://doi.org/10.1109/mwc.2011.5751298.

    Article  Google Scholar 

  38. Zhuwei, W., Qihang, P., & Milstein, L. B. (2011). Multi-user resource allocation for downlink multi-cluster multicarrier DS CDMA system. IEEE Transactions on Wireless Communications, 10(8), 2534–2542. https://doi.org/10.1109/TWC.2011.061511.100408.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Tayebi.

Appendices

Appendix A

$$\begin{aligned} {U_{syn}} &= { { {\sqrt{{E_c}} } } \big / { m }}\sum \limits _{i = 1}^{2\beta } {{{\left( {x_i^0} \right) }^2}} \sum \limits _{j = 1}^h {\alpha _j^{}\left( {m + 1 - j} \right) } +\,\,{ { {\sqrt{{E_c}} } } \big / { m }}\sum \limits _{i = 1}^{2\beta } {\left( {x_{i - 1}^0x_i^0} \right) } \sum \limits _{j = 1}^{h - 1} {\alpha _j^{}j} \nonumber \\& { { { + \sqrt{{E_c}} } } \big / { m }}{B_k}\sum \limits _{i = 1}^{2\beta } {x_i^kx_i^0} \sum \limits _{j = 1}^h {\alpha _j^{}\left( {m + 1 - j} \right) } + { { {\sqrt{{E_c}} } } \big / { m }}{B_k}\sum \limits _{i = 1}^{2\beta } {\left( {x_{i - 1}^kx_i^0} \right) } \sum \limits _{j = 1}^{h - 1} {\alpha _j^{}j} \nonumber \\& + { { {\sqrt{{E_N}} } } \big / { m }}\sum \limits _{i = 1}^{2\beta } {m\left( {n_i^{}.\,x_i^0} \right) } + { { {\sqrt{{E_J}} } } \big / { m }}\sum \limits _{i = 1}^{2\beta } {m\left( {J_i^{}.\,x_i^0} \right) } \end{aligned}$$
$$\begin{aligned} E\left[ {{U_{syn}}} \right] = E[A + B + C + D] = E[A] + E[B] + E[C] + E[D] + E[F] + E[G] \end{aligned}$$
$$\begin{aligned} E[A]=\,\,& {} E\left[ {{ { {\sqrt{{E_c}} } } \big / { m }}\left( {\sum \limits _{i = 1}^{2\beta } {{{\left( {x_i^0} \right) }^2}} } \right) \left( {\sum \limits _{j = 1}^h {\alpha _j^{}\left( {m + 1 - j} \right) } } \right) } \right] \nonumber \\=\,\,& {} { { {\sqrt{{E_c}} } } \big / { m }}E\left[ {\left( {\sum \limits _{i = 1}^{2\beta } {{{\left( {x_i^0} \right) }^2}} } \right) } \right] E\left[ {\left( {\sum \limits _{j = 1}^h {\alpha _j^{}\left( {m + 1 - j} \right) } } \right) } \right] \nonumber \\=\,\,& {} \sqrt{{E_c}} 2\beta \sqrt{ { \pi } \big / { {h(2m + 1 - h)} } \big / { {2m} }}\\ E[B]=\,\,& {} E[C] = E[D] = E[F] = E[G] = 0\\ E[{U_{syn}}]= & {} \sqrt{{E_c}} 2\beta \sqrt{{ { \pi } \big / { 4 }}} { { {h(2m + 1 - h)} } \big / { {2m} }} \end{aligned}$$

and the variance is:

$$\begin{aligned} \sigma _{{U_{syn}}}^2=\,\,& {} E[{\left( {{U_{syn}}} \right) ^2}] - {\left( {E[{U_{syn}}]} \right) ^2}\nonumber \\=\,\,& {} E[{(A + B + C + D + F + G)^2}] - {\left( {E[{U_{syn}}]} \right) ^2}\nonumber \\=\,\,& {} E[{A^2}] + E[{B^2}] + E[{C^2}] + E[{D^2}] + E[{D^2}] + E[{D^2}] - {\left( {E[{U_{syn}}]} \right) ^2} \end{aligned}$$
$$\begin{aligned} E[A_{}^2]=\,\,& {} E\left[ {{{\left( {{ { {\sqrt{{E_c}} } } \big / { m }}\left( {\sum \limits _{i = 1}^{2\beta } {{{\left( {x_i^0} \right) }^2}} } \right) \left( {\sum \limits _{j = 1}^h {\alpha _j^{}\left( {m + 1 - j} \right) } } \right) } \right) }^2}} \right] \nonumber \\=\,\,& {} { { {{E_c}} } \big / { {{m^2}} }}.E\left[ {{{\left( {\sum \limits _{i = 1}^{2\beta } {{{\left( {x_i^0} \right) }^2}} } \right) }^2}} \right] E\left[ {{{\left( {\sum \limits _{j = 1}^h {\alpha _j^{}\left( {m + 1 - j} \right) } } \right) }^2}} \right] \end{aligned}$$
$$\begin{aligned}&E\left[ {{{\left( {\sum \limits _{i = 1}^{2\beta } {{{\left( {x_i^0} \right) }^2}} } \right) }^2}} \right] = \,2\beta { { {{E_c}} } \big / { {{m^2}} }}\left( {E\left[ {{{\left( {x_i^0} \right) }^4}} \right] + (2\beta - 1)E\left[ {{{\left( {x_i^0} \right) }^2}} \right] E\left[ {{{\left( {x_i^0} \right) }^2}} \right] } \right) \nonumber \\&\qquad \qquad \qquad \quad = \,\left( {\beta + 4{\beta ^2}} \right) { { {{E_c}} } \big / { {{m^2}} }} \end{aligned}$$

Also

$$\begin{aligned}&E\left[ {{{\left( {\sum \limits _{j = 1}^h {\alpha _j^{}\left( {m + 1 - j} \right) } } \right) }^2}} \right] = E\left[ {{{\left( {\alpha _j^{}} \right) }^2}} \right] E\left[ {{{\left( {{{\sum \limits _{j = 1}^h {\left( {m + 1 - j} \right) } }^2}} \right) }^{}}} \right] \nonumber \\&\qquad + E\left[ {\alpha _j^{}} \right] E\left[ {\alpha _j^{}} \right] 2E\left[ {\sum \limits _{l = 1}^{h - 1} {\sum \limits _{j = l + 1}^h {\left( {m + 1 - l} \right) \left( {m + 1 - j} \right) } } } \right] \nonumber \\ \quad&={ { {h(2{h^2} - 3h(2m + 1) + 6{m^2} + 6m + 1)} } \big / { 6 }}\nonumber \\&\quad + { { \pi } \big / { 4 }}\left( {{ { {\left( {{h^2} - h} \right) \left( {3{h^2} - 12hm - 7h + 12{m^2} + 12m + 2} \right) } } \big / { {12} }}} \right) \end{aligned}$$

Thus

$$\begin{aligned} E[A^2]=\,\,& {} \left( {\beta + 4{\beta ^2}} \right) { { {{E_c}} } \big / { {{m^2}} }}\\&\quad \left( \begin{array}{l} { { {h(2{h^2} - 3h(2m + 1) + 6{m^2} + 6m + 1)} } \big / { 6 }}\\ + { { \pi } \big / { {\left( {{h^2} - h} \right) \left( \begin{array}{l} 3{h^2} - 12hm - 7h\\ + 12{m^2} + 12m + 2 \end{array} \right) } } \big / { {12} }} \end{array}\right) \end{aligned}$$
$$\begin{aligned} E[B_{}^2]=\,\,& {} E\left[ {{{\left( {{ { {\sqrt{{E_c}} } } \big / { m }}\left( {\sum \limits _{i = 1}^{2\beta } {\left( {x_{i - 1}^0x_i^0} \right) } } \right) \left( {\sum \limits _{j = 1}^{h - 1} {\alpha _j^{}j} } \right) } \right) }^2}} \right] \nonumber \\= \,& {} { { {2\beta {E_c}} } \big / { {{m^2}} }}.\left( {E\left[ {{{\left( {\alpha _j^{}} \right) }^2}} \right] E\left[ {\left( {\sum \limits _{j = 1}^{h - 1} {{{\left( j \right) }^2}} } \right) } \right] + E\left[ {\alpha _j^{}} \right] E\left[ {\alpha _j^{}} \right] 2E\left[ {\sum \limits _{l = 1}^{h - 2} {\sum \limits _{j = l + 1}^{h - 1} {jl} } } \right] } \right) \nonumber \\= \,& {} { { {2\beta {E_c}} } \big / { {{m^2}} }}.\left( {\frac{{h(h - 1)(2h - 1)}}{6} + \frac{{\pi (h - 2)(h - 1)h(3h - 1)}}{{48}}} \right) \end{aligned}$$
$$\begin{aligned} E[C_{}^2]=\,\,& {} E\left[ {{{\left( {{{{\sqrt{{E_c}} }} \big / {m}}\left( {\sum \limits _{i = 1}^{2\beta } {\left( {x_{i - 1}^0x_i^0} \right) } } \right) \left( {\sum \limits _{j = 1}^{h - 1} {\alpha _j^{}j} } \right) } \right) }^2}} \right] \\= &\, {} {{{2\beta {E_c}}}\big /{{{m^2}}}}.\left( \begin{array}{l} E\left[ {{{\left( {\alpha _j^{}} \right) }^2}} \right] E\left[ {{{\left( {{{\sum \limits _{j = 1}^h {\left( {m + 1 - j} \right) } }^2}} \right) }^{}}} \right] \\ + 2E\left[ {\alpha _j^{}} \right] E\left[ {\alpha _j^{}} \right] 2E\left[ {\sum \limits _{l = 1}^{h - 2} {\sum \limits _{j = l + 1}^{h - 1} {\left( {m + 1 - l} \right) \left( {m + 1 - j} \right) } } } \right] \end{array} \right) \\=\,\,& {} {{{2\beta {E_c}}} \big /{{{m^2}}}}.\left( \begin{array}{l} {{{h(2{h^2} - 3h(2m + 1) + 6{m^2} + 6m + 1)}} \big /{6}}\\ + {{\pi } \big /{4}}\left( {{{{\left( {{h^2} - h} \right) \left( {3{h^2} - 12hm - 7h + 12{m^2} + 12m + 2} \right) }} \big / {{12}}}} \right) \end{array} \right) \end{aligned}$$
$$\begin{aligned} E[D_{}^2]= 2\beta { { {{E_c}} } \big / { {{m^2}} }}.\left( {\frac{{h(h - 1)(2h - 1)}}{6} + \frac{{\pi (h - 2)(h - 1)h(3h - 1)}}{{48}}} \right) \end{aligned}$$
$$\begin{aligned} E(F) = E\left[ {{{\left( {{ { {\sqrt{{E_N}} } } \big / { m }}\sum \limits _{i = 1}^{2\beta } {m\left( {n_i^{}.\,x_i^{}} \right) } } \right) }^2}} \right] = { { {{E_N}} } { {{m^2}} }}{m^2}E\left[ {{{\left( {\sum \limits _{i = 1}^{2\beta } {\left( {n_i^{}.\,x_i^{}} \right) } } \right) }^2}} \right] = 2\beta { { {{N_0}} } \big / { 2 }} \end{aligned}$$
$$\begin{aligned} E(G) = E\left[ {{{\left( {\sum \limits _{i = 1}^{2\beta } {m\left( {J_i^{}.\,x_i^{}} \right) } } \right) }^2}} \right] = 2\beta \varphi { { {{J_0}} } \big / { 2 }} \end{aligned}$$

We define \(\xi\), \(\psi\) and \(\eta\) as:

$$\begin{aligned} \xi=\,\,& {} { { {h(2{h^2} - 3h(2m + 1) + 6{m^2} + 6m + 1)} } \big / { {6{m^2}} }}\\&+ { { \pi } \big / { 4 }}\left( {{ { {\left( {{h^2} - h} \right) \left( {3{h^2} - 12hm - 7h + 12{m^2} + 12m + 2} \right) } } \big / { {12{m^2}} }}} \right) \\ \psi= & {} \left( {\frac{{h(h - 1)(2h - 1)}}{{6{m^2}}} + \frac{{\pi (h - 2)(h - 1)h(3h - 1)}}{{48{m^2}}}} \right) \\ \eta= & {} { { {h(2m + 1 - h)} } \big / { {2m} }}\sqrt{{ { \pi } \big / { 4 }}} \end{aligned}$$
$$\begin{aligned} \sigma _{{U_{syn}}}^2 &= \left( {3\beta + 4{\beta ^2}} \right) {E_c}\xi + 4\beta {E_c}\psi + 2\beta { { {{N_0}} } \big / { {{J_0}} } \big / { 2 }}\\&-\, {\left( {\sqrt{{E_c}} 2\beta \eta } \right) ^2}\\ \sigma _{{U_{syn}}}^2 &= {E_b}\left( {\left( {1.5 + 2\beta } \right) \xi + 2\psi + \beta {{\left( {SNR} \right) }^{ - 1}} + \beta \varphi {{\left( {SJR} \right) }^{ - 1}} - 2\beta {\eta ^2}} \right) \end{aligned}$$

where

$$\begin{aligned} {E_b} = 2\beta {E_c} \end{aligned}$$

Also, we define

$$\begin{aligned} SNR = {{{{N_0}}}/{{{E_b}}}} \end{aligned}$$
$$\begin{aligned} SJR = {{{{J_0}}}/{{{E_b}}}} \end{aligned}$$
$$\begin{aligned} {U_{syn}} \approx \left( {\sqrt{2\beta {E_b}} \eta ,{E_b}\left( {\left( {1.5 + 2\beta } \right) \xi + 2\psi + \beta {{\left( {SNR} \right) }^{ - 1}} + \beta \varphi {{\left( {SJR} \right) }^{ - 1}} - 2\beta {\eta ^2}} \right) } \right) \end{aligned}$$

Appendix B

$$\begin{aligned} {U_{syn\_int}} &= {{{\sqrt{{E_c}}}} /{m}}\left( {\sum \limits _{i = 1}^{2\beta } {\left( {{{\left( {x_i^0} \right) }^2}\sum \limits _{j = 1}^h {\alpha _{ji}^{}\left( {m + 1 - j} \right) } } \right) } } \right) + {{{\sqrt{{E_c}}}}/ { m }}\left( {\sum \limits _{i = 1}^{2\beta } {\left( {x_{i - 1}^0x_i^0} \right) \sum \limits _{j = 1}^{h - 1} {\alpha _{ij}^{}j} } } \right) \\&{ { { + \sqrt{{E_c}} } } \big / { m }}\left( {\sum \limits _{i = 1}^{2\beta } {x_i^kx_i^0\sum \limits _{j = 1}^h {\alpha _{ji}^{}\left( {m + 1 - j} \right) } } } \right) + { { {\sqrt{{E_c}} } } \big / { m }}\left( {\sum \limits _{i = 1}^{2\beta } {\left( {x_{i - 1}^kx_i^0} \right) \sum \limits _{j = 1}^{h - 1} {\alpha _{ij}^{}j} } } \right) \\&+\, { { {\sqrt{{E_N}} } } \big / { m }}\sum \limits _{i = 1}^{2\beta } {m\left( {n_i^{}.\,x_i^0} \right) } + { { {\sqrt{{E_J}} } } \big / { m }}\sum \limits _{i = 1}^{2\beta } {m\left( {J_i^{}.\,x_i^0} \right) } \\=\,\,& {} A' + B' + C' + D' + F' + G' \end{aligned}$$
$$\begin{aligned} E[A'^2]=\,\,& {} E\left[ {{{\left( {{ { {\sqrt{{E_c}} } } \big / { m }}\left( {\sum \limits _{i = 1}^{2\beta } {{{\left( {x_i^0} \right) }^2}} } \right) \left( {\sum \limits _{j = 1}^h {\alpha _j^{}\left( {m + 1 - j} \right) } } \right) } \right) }^2}} \right] \\=\,\,& {} { { {{E_c}} } \big / { {{m^2}} }}\left( \begin{array}{l} 2\beta E\left[ {{{\left( {x_i^0} \right) }^4}} \right] E\left[ {{{\left( {\sum \limits _{j = 1}^h {\alpha _j^{}\left( {m + 1 - j} \right) } } \right) }^2}} \right] \\ + 2\beta \left( {2\beta - 1} \right) E\left[ {{{\left( {x_i^0} \right) }^2}} \right] E\left[ {{{\left( {x_i^0} \right) }^2}} \right] \\ E\left[ {\alpha _j^{}} \right] E\left[ {\alpha _p^{}} \right] \sum \limits _{j = 1}^h {\left( {m + 1 - j} \right) } \sum \limits _{p = 1}^h {\left( {m + 1 - p} \right) } \end{array} \right) \\ \\&\quad 2\beta E\left[ {{{\left( {x_i^0} \right) }^4}} \right] E\left[ {{{\left( {\sum \limits _{j = 1}^h {\alpha _j^{}\left( {m + 1 - j} \right) } } \right) }^2}} \right] = 2\beta E\left[ {{{\left( {x_i^0} \right) }^4}} \right] \left( \xi \right) \\ \\&\quad 2\beta \left( {2\beta - 1} \right) E\left[ {{{\left( {x_i^0} \right) }^2}} \right] E\left[ {{{\left( {x_i^0} \right) }^2}} \right] \sum \limits _{j = 1}^h {\alpha _j^{}\left( {m + 1 - j} \right) } \\&\quad \sum \limits _{p = 1}^h {\alpha _p^{}\left( {m + 1 - p} \right) } = 2\beta \left( {2\beta - 1} \right) { { \pi } \big / { 4 }}{ { 1 } \big / { 4 }}{h^2}{\left( {h - 2m - 1} \right) ^2}\\ \\&\quad E[A'^2] = {E_c}3\beta \xi + {E_c}2\beta \left( {2\beta - 1} \right) {\eta ^2} \end{aligned}$$
$$\begin{aligned} E[B'^2]=\,\,& {} E\left[ {{{\left( {{ { {\sqrt{{E_c}} } } \big / { m }}\left( {\sum \limits _{i = 1}^{2\beta } {\left( {x_{i - 1}^0x_i^0} \right) \sum \limits _{j = 1}^{h - 1} {\alpha _{ij}^{}j} } } \right) } \right) }^2}} \right] \nonumber \\=\,\,& {} { { {{E_c}} } \big / { {{m^2}} }}\left( {2\beta E\left[ {{{\left( {x_i^0} \right) }^2}} \right] E\left[ {{{\left( {x_{i - 1}^0} \right) }^2}} \right] E\left[ {{{\left( {\sum \limits _{j = 1}^{h - 1} {\alpha _{ij}^{}j} } \right) }^2}} \right] } \right) = 2\beta {E_c}\psi \end{aligned}$$
$$\begin{aligned} E[C'^2]=\,\,& {} E\left[ {{{\left( {{ { {\sqrt{{E_c}} } } \big / { m }}\left( {\sum \limits _{i = 1}^{2\beta } {x_i^kx_i^0\sum \limits _{j = 1}^h {\alpha _{ji}^{}\left( {m + 1 - j} \right) } } } \right) } \right) }^2}} \right] \nonumber \\=\,\,& {} { { {{E_c}} } \big / { {{m^2}} }}\left( {2\beta E\left[ {x_i^kx_i^0} \right] E\left[ {{{\left( {\sum \limits _{j = 1}^h {\alpha _j^{}\left( {m + 1 - j} \right) } } \right) }^2}} \right] } \right) = 2\beta {E_c}\xi \end{aligned}$$
$$\begin{aligned} E[D_{}^2] = 2\beta {E_c}\psi \end{aligned}$$
$$\begin{aligned} {U_{syn\_int}} \approx \left( {\sqrt{2\beta {E_b}} ,{E_b}\left( {{ { 5 } \big / { 2 }}\xi + - {\eta ^2} + 2\psi + \beta {{\left( {SNR} \right) }^{ - 1}} + \beta \varphi {{\left( {SJR} \right) }^{ - 1}}} \right) } \right) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayebi, A., Berber, S. & Swain, A. A New Approach for Error Rate Analysis of Wide-Band DSSS-CDMA System with Imperfect Synchronization Under Jamming Attacks. Wireless Pers Commun 98, 3583–3610 (2018). https://doi.org/10.1007/s11277-017-5030-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5030-5

Keywords

Navigation