Skip to main content
Log in

Asymmetric Fission Transmission of Linear-to-Circular Polarization Converter Using Bi-layer Split Ring Structure

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A circular polarizer based on bi-layer split ring structure is proposed that could achieve asymmetric fission transmission of linearly polarized wave at the dual band. Firstly, a new approach of “Fission Transmission of Electromagnetic (FTEM) waves” is introduced to understand the polarization transformation behavior for linear-to-circular polarization. The designed structure achieves broadband circularly polarized wave with an asymmetric transmission over resonance frequencies by the principle of FTEM wave. The electronics circuit of proposed structure demonstrates the transformation behavior of EM waves when the electric and magnetic coupling between the upper and lower patterned SRR is reached at the certain strength. The physics of the giant circular dichroism effect and optical activity is illustrated by the surface currents distribution on the structure. The proposed structure achieves a right-handed circularly polarized wave and left hand circularly polarized wave with high transmission at 13.94–15.70 GHz and at 16.0–17.03 GHz, respectively. The axial ratio bandwidth of 11.76 and 6.86% is obtained at the dual band. The simulated and measured results exhibit good correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Montejo-Garai, J. R., & Zapata, J. (1999). Full-wave design of dual-band double-septum circular waveguide polarizers. Microwave and Optical Technology Letters, 20(2), 99–103.

    Article  Google Scholar 

  2. Mutlu, M., Akosman, A. E., & Ozbay, E. (2012). Broadband circular polarizer based on high-contrast gratings. Optics Letters, 37(11), 2094–2096.

    Article  Google Scholar 

  3. Mutlu, M., Akosman, A. E., Kurt, G., Gokkavas, M., & Ozbay, E. (2012). Experimental realization of a high-contrast grating based broadband quarter-wave plate. Optics Express, 20(25), 27966–27973.

    Article  Google Scholar 

  4. Mutlu, M., Akosman, A. E., Serebryannikov, A. E., & Ozbay, E. (2011). Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. Optics Letters, 36(9), 1653–1655.

    Article  Google Scholar 

  5. Silveirinha, M. G. (2008). Design of linear-to-circular polarization transformers made of long densely packed metallic helices. IEEE Transactions on Antennas and Propagation, 56(2), 390–401.

    Article  Google Scholar 

  6. Shatrow, A. D., Chuprin, A. D., & Sivov, A. N. (1995). Constructing the phase converters consisting of arbitrary number of translucent surfaces. IEEE Transactions on Antennas and Propagation, 43(1), 109–113.

    Article  Google Scholar 

  7. Dietlein, C., Luukanen, A., Popovi, Z., & Grossman, E. (2007). A W-band polarization converter and isolator. Transactions on Antennas and Propagation, 55(6), 1804–1809.

    Article  Google Scholar 

  8. Leong, K. M. K. H., & Shiroma, W. A. (2002). Waffle-grid polariser. Electronics Letters, 38(22), 1360–1361.

    Article  Google Scholar 

  9. Mailloux, R. J. (2005). Phased array antenna handbook. Boston: Artech House.

    Google Scholar 

  10. Fartookzadeh, M., & MohseniArmaki, S. H. (2016). Enhancement of dual-band reflection-mode circular polarizers using dual-layer rectangular frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 64(10), 4570–4574.

    Article  MathSciNet  Google Scholar 

  11. Cao, H., Liang, J., Wu, X., et al. (2016). Dual-band polarization conversion based on non-twisted Q-shaped metasurface. Optics Communications, 370, 311–318.

    Article  Google Scholar 

  12. Silveirinha, M. G. (2008). Design of linear-to-circular polarization transformers made of long densely packed metallic helices. IEEE Transactions on Antennas and Propagation, 56(2), 390–401.

    Article  Google Scholar 

  13. Mutlu, M., Akosman, A. E., Serebryannikov, A. E., & Ozbay, E. (2011). Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. Optical Letter, 36(9), 1653–1655.

    Article  Google Scholar 

  14. Cheng, Y., Nie, Y., Cheng, Z., & Gong, R. Z. (2014). Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial. Progress in Electromagnetics Research, 145, 263–272.

    Article  Google Scholar 

  15. Fonseca, N. J. G., & Mangenot, C. (2016). High-performance electrically thin dual-band polarizing reflective surface for broadband satellite applications. IEEE Transactions on Antennas and Propagation, 64(2), 640–649.

    Article  MathSciNet  MATH  Google Scholar 

  16. Mangi, F. A., Xiao, S., Mallah, G. A., et al. (2017). Multi-band circular polarizer based on periodic metallic strip array. International Journal of Engineering Systems Modelling and Simulation, 9(3), 143–149.

    Article  Google Scholar 

  17. Cao, T., & Cryan, M. J. (2012). Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial. Journal of Optics, 14(8), 085101. http://dx.doi.org/10.1364/OE.16.011802

    Article  Google Scholar 

  18. Doumanis, E., Goussetis, G., Gomez-Tornero, J. L., et al. (2012). Anisotropic impedance surfaces for linear to circular polarization conversion. IEEE Transactions on Antennas and Propagation, 60(1), 212–219.

    Article  Google Scholar 

  19. Lin, X. Q., & Cui, T. J. (2008). Controlling the bandwidth of split ring resonators. IEEE Microwave and Wireless Components Letters, 18(4), 245–247.

    Article  Google Scholar 

  20. Zhu, X.-C., Hong, W., Wu, K., et al. (2014). Design of a bandwidth-enhanced polarization rotating frequency selective surface. IEEE Transactions on Antennas and Propagation, 62(2), 940–944.

    Article  Google Scholar 

  21. Chen, J., & Zhang, A. (2013). A linear-to-circular polarizer using split ring resonators. Applied Computational Electromagnetics Society Journal, 28(6), 507–512.

    MathSciNet  Google Scholar 

  22. Chen, H., Ma, H., Wang, J., et al. (2016). Ultra-wideband transparent 90° polarization conversion metasurfaces. Applied Physics A, 122(46), 2–5.

    Google Scholar 

  23. Zarifi, D., Soleimani, M., & Nayyeri, V. (2012). Dual-and multiband chiral metamaterial structures with strong optical activity and negative refraction index. IEEE Transactions Wireless Propagation Letter, 11, 334–337.

    Article  Google Scholar 

  24. Volski, V., Vandenbosch, G. A. E., & Vasylchenko, A. (2011). A dedicated technique to measure shielding effectiveness of textiles using a two horn-antenna set-up. The Journal of The Textile Institute, 102(2), 164–171.

    Article  Google Scholar 

  25. Singh, R., Ai-Naib, I. A. I., Koch, M., & Zhang, W. L. (2011). Sharp Fano resonances in THz metamaterials. Optical Express, 19, 6312–6319.

    Article  Google Scholar 

  26. Shi, J. H., Zhu, Z., Ma, H. F., Jiang, W. X., & Cui, T. J. (2012). Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial. Journal of Applied Physics, 112(7), 073522. https://doi.org/10.1063/1.4757961

    Article  Google Scholar 

  27. Ye, Y., & He, S. (2010). 90° polarization rotator using a bilayered chiral metamaterial with giant optical activity. Applied Physics Letters, 96(20), 203501. https://doi.org/10.1063/1.3429683

    Article  Google Scholar 

  28. Huang, C., Ma, X., Pu, M., Yi, G., Wang, Y., & Luo, X. (2013). Dual-band 90° polarization rotaor using twisted split ring resonators array. Optics Communications, 291, 345–348.

    Article  Google Scholar 

  29. Mangi, F. A., Xiao, S., Memon, I., & Jamro, D. A. (2016). Novel design and performance analysis of broadband dual layer circular polarizer based on frequency selective surface for 60 GHZ application. In: Zeng Q. A. (Ed.), Wireless communications, networking and applications. Lecture notes in electrical engineering (vol. 348, pp. 319–325). New Delhi: Springer.

    Chapter  Google Scholar 

  30. Huang, C., Ma, X., Pu, M., Yi, G., Wang, Y., & Luo, X. (2013). Dual-band 90° polarization rotaor using twisted split ring resonators array. Optics Communications, 291, 345–348.

    Article  Google Scholar 

  31. Mangi, F. A., Xiao, S., Mallah, G. A., et al. (2016). Multi-band circular polarizer based on fission transmission of linearly polarized wave for x-band applications. Journal of Electrical and Computer Engineering, 14, 8.

    Google Scholar 

  32. Mangi, F. A., Xiao, S., Yao, Z., et al. (2017). Double-layer broadband circular polarizer based on fission transmission of linear polarization for Ku-band applications. Microwave and Optical Technology Letters, 59, 2680–2685.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farman Ali Mangi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangi, F.A., Xiao, S., Arain, Q.A. et al. Asymmetric Fission Transmission of Linear-to-Circular Polarization Converter Using Bi-layer Split Ring Structure. Wireless Pers Commun 99, 985–997 (2018). https://doi.org/10.1007/s11277-017-5162-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5162-7

Keywords

Navigation