Skip to main content
Log in

Cuckoo Search Based Optimization of Multiuser Cognitive Radio System Under the Effect of Shadowing

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Shadow fading is one of the least investigated factors of received signal power in a typical wireless communication system. Variations in the received power caused by shadowing events can impose some serious changes in the communication. This paper, proposes a new multiuser cognitive radio system in shadowing environment and its design optimization using cuckoo search algorithm. The transmission parameters of multiple secondary users in the purposed CR model are considered on the basis of IEEE 802.22 WRAN standard. An attempt to optimize these parameters in shadowing environment to achieve multiple objectives for desired quality of service have been made using a relatively newer and simpler cuckoo search algorithm. The optimization results have been compared with another efficient biogeography based optimization technique and the traditional simulated annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gandetto, M., & Regazzoni, C. (2007). Spectrum sensing: A distributed approach for cognitive terminals. IEEE Journal on Selected in Areas Communications, 25(3), 546–557.

    Article  Google Scholar 

  2. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  3. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  4. Newman, T. R., Barker, B. A., Wyglinski, A. M., et al. (2006). Cognitive engine implementation for wireless multicarrier transceivers. Wireless Communications and Mobile Computing, 7(9), 1129–1142.

    Article  Google Scholar 

  5. Newman, T. R. (2008). Multiple objective fitness functions for cognitive radio adaptation. Dissertation, University of Kansas.

  6. Zhao, N., Li, S., & Wu, Z. (2012). Cognitive radio engine design based on ant colony optimization. Wireless Personal Communications, 65(1), 15–24.

    Article  Google Scholar 

  7. Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, L., & Feng, G. (2006). Simulated annealing based multi-constrained QoS routing in mobile adhoc networks. Wireless Personal Communications, 41(3), 393–405.

    Article  Google Scholar 

  9. Yang, G. K., & Myung, J. L. (2014). Scheduling multi-channel and multi-timeslot in time constrained wireless sensor networks via simulated annealing and particle swarm optimization. IEEE Communications Magazine, 52(1), 122–129.

    Article  Google Scholar 

  10. Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702–713.

    Article  Google Scholar 

  11. Singh, U., Kumar, H., & Kamal, T. S. (2010). Design of Yagi-Uda antenna using biogeography based optimization. IEEE Transactions on Antennas and Propagation, 58(10), 3375–3379.

    Article  Google Scholar 

  12. Boussaid, I., Chatterjee, A., Siarry, P., et al. (2011). Hybridizing biogeography-based optimization with differential evolution for optimal power allocation in wireless sensor networks. IEEE Transactions on Vehicular Technology, 60(5), 2347–2353.

    Article  Google Scholar 

  13. Ahirwal, M. K., Kumar, A., & Singh, G. K. (2013). EEG/ERP adaptive noise canceller design with controlled search space (CSS) approach in cuckoo and other optimization algorithms. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(6), 1491–1504.

    Article  Google Scholar 

  14. Chetty, S., & Adewumi, A. O. (2014). Comparison study of swarm intelligence techniques for the annual crop planning problem. IEEE Transactions on Evolutionary Computation, 18(2), 258–268.

    Article  Google Scholar 

  15. Kaur, K., Rattan, M., & Patterh, M. S. (2013). Optimization of cognitive radio system using simulated annealing. Wireless Personal Communications, 71(2), 1283–1296.

    Article  Google Scholar 

  16. Kaur, K., Rattan, M., & Patterh, M. S. (2014). Biogeography based optimization of cognitive radio system. International Journal of Electronics, 101(1), 24–36.

    Article  Google Scholar 

  17. Yang, X. S., Deb, S. (2009). Cuckoo Search via Le´vy Flights. In Proceedings IEEE Conference on Nature and Biologically Inspired Computing. https://doi.org/10.1109/nabic.2009.5393690.

  18. Yang, X. S., & Deb, S. (2013). Cuckoo search: Recent advances and applications. Neural Computing and Applications, 24(1), 169–174.

    Article  Google Scholar 

  19. Salo, J., Vuokko, L., El-Sallabi, H. M., et al. (2007). An additive model as a physical basis for shadow fading. IEEE Transactions on Vehicular Technology, 56(1), 13–26.

    Article  Google Scholar 

  20. Yang, X. S. (2010). Nature-inspired metaheuristic algorithms (2nd ed.). London: Luniver Press.

    Google Scholar 

  21. Stevenson, C., Chouinard, G., Zhongding, L., et al. (2009). IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications Magazine, 47(1), 130–138.

    Article  Google Scholar 

  22. Stuber, G. L. (2012). Propagation modeling. In Principles of mobile communication (3rd edn.), (pp. 43–163). New York: Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiranjot Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, K., Rattan, M. & Patterh, M.S. Cuckoo Search Based Optimization of Multiuser Cognitive Radio System Under the Effect of Shadowing. Wireless Pers Commun 99, 1217–1230 (2018). https://doi.org/10.1007/s11277-017-5181-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5181-4

Keywords