Skip to main content
Log in

An Improved Fuzzy C-Means Clustering Algorithm Based on Multi-chain Quantum Bee Colony Optimization

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The fuzzy c-means (FCM) algorithm is the most popular clustering method. Many studies of FCM had been done. However, the FCM algorithm and its studies are usually affected by the selection of initial values and noise data, and can easily fall into local optimal value. To overcome these drawbacks of FCM, this paper proposed the algorithm of FCM based on multi-chain quantum bee colony algorithm (MQBC-FCM). In MQBC-FCM, first, the multiple chains encoding method is introduced to the artificial bee colony algorithm to propose the MQBC algorithm. Then MQBC is used to search for the optimal initial clustering centers. The proposed algorithm is used on artificial data sets and image segmentations, and its performance is contrasted with several algorithms. The experimental results have indicated that the proposed MQBC-FCM has efficiently improved the performance of the clustering algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Karaboga, D., & Ozturk, C. (2011). A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Applied Soft Computing, 11(1), 652–657.

    Article  Google Scholar 

  2. Dunn, J. C. (1974). A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters. Journal of Cybernetics, 3(3), 32–57.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bezdek, J. C. (1974). Numerical taxonomy with fuzzy sets. Journal of Mathematical Biology, 1(1), 57–71.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bezdek, J. C. (1974). Cluster validity with fuzzy sets. Journal of Cybernetics, 3(3), 58–72.

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, X., Wang, Y., & Wang, L. (2004). Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognition Letters, 25(10), 1123–1132.

    Article  Google Scholar 

  6. Pal, N. R., Pal, K., Keller, J. M., & Bezdek, J. C. (2005). A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems, 13(4), 517–530.

    Article  Google Scholar 

  7. Song, Y.-S., Park, D.-C., Tran, C. N., Choi, H.-S., & Suk, M. (2006). Fuzzy c-means algorithm with divergence-based kernel. International Conference on Fuzzy Systems and Knowledge Discovery, 2006, 99–108.

    Article  Google Scholar 

  8. Liu, X., & Li, X. (2007). Performance research of Gaussian function weighted fuzzy c-means algorithm. International Symposium on Multispectral Image Processing and Pattern Recognition, 6788, 1–7.

    Google Scholar 

  9. Yang, M.-S., & Tsai, H.-S. (2008). A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recognition Letters, 29(12), 1713–1725.

    Article  Google Scholar 

  10. Kaur, P., & Gosain, A. (2011). A density oriented fuzzy c-means clustering algorithm for recognising original cluster shapes from noisy data. International Journal of Innovative Computing and Applications, 3(2), 77–87.

    Article  Google Scholar 

  11. Havens, T. C., Bezdek, J. C., Leckie, C., Hall, L. O., & Palaniswami, M. (2012). Fuzzy c-means algorithms for very large data. IEEE Transactions on Fuzzy Systems, 20(6), 1130–1146.

    Article  Google Scholar 

  12. Izakian, H., Pedrycz, W., & Jamal, I. (2013). Clustering spatiotemporal data: An augmented fuzzy C-means. IEEE Transactions on Fuzzy Systems, 21(5), 855–868.

    Article  Google Scholar 

  13. Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of density peaks. Science, 344(6191), 1492–1496.

    Article  Google Scholar 

  14. Fazendeiro, P., & de Oliveira, J. V. (2015). Observer-biased fuzzy clustering. IEEE Transactions on Fuzzy Systems, 23(1), 85–97.

    Article  Google Scholar 

  15. Pimentel, B. A., & de Souza, R. M. C. R. (2013). A multivariate fuzzy c-means method. Applied Soft Computing, 13(4), 1592–1607.

    Article  Google Scholar 

  16. Lin, K.-P. (2014). A novel evolutionary kernel intuitionistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems, 22(5), 1074–1087.

    Article  Google Scholar 

  17. Yang, M.-S., & Nataliani, Y. (2017). Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters. Pattern Recognition, 71, 45–59.

    Article  Google Scholar 

  18. Ding, Y., & Fu, X. (2016). Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm. Neurocomputing, 188, 233–238. https://doi.org/10.1016/j.neucom.2015.01.106.

    Article  Google Scholar 

  19. Duan, L., Yu, F., & Zhan, L. (2016). An improved fuzzy c-means clustering algorithm. In 2016 12th international conference on natural computation, fuzzy systems and knowledge discovery (Vol. 12, pp. 1199–1204).

  20. Chang, X., Wang, Q., Liu, Y., & Wang, Y. (2017). Sparse regularization in fuzzy c-means for high-dimensional data clustering. IEEE Transactions on Cybernetics, 47(9), 2616–2627.

    Article  Google Scholar 

  21. Tang, S., Peng, G., & Zhong, Z. (2016). An improved fuzzy c-means clustering algorithm for transformer fault. In 2016 China international conference on electricity distribution, 2016 (pp. 1–5).

  22. Pimentel, B. A., & de Souza, R. M. C. R. (2016). Multivariate fuzzy c-means algorithms with weighting. Neurocomputing, 174, 946–965.

    Article  Google Scholar 

  23. Jing, Gu, Jiao, Licheng, Yang, Shuyuan, & Zhao, Jiaqi. (2017). Sparse learning based fuzzy c-means clustering. Knowledge-Based Systems, 119, 113–125.

    Article  Google Scholar 

  24. Liu, X., Zhang, L., & Li, Z. (2010). Clustering optimization based on ant colony algorithm. Computer Engineering, 36(9), 190–191.

    Google Scholar 

  25. Zhao, X., & Zhang, S. (2011). The artificial colony KFCM algorithm based on the Boltzmann selection. Journal of Lanzhou University of Technology, 37(1), 71–75.

    Google Scholar 

  26. He, J., Wang, J., & Zhiyong, Y. (2016). Clustering algorithm based on modified artificial bee colony and fuzzy c-means algorithm. Computer Application Research, 33(5), 1342–1345.

    Google Scholar 

  27. Li, S., & Li, P. (2006). Quantum genetic algorithm based on real encoding and gradient information of object function. Journal of Harbin Institute of Technology, 38(8), 1216–1223.

    Google Scholar 

  28. Li, P., & Li, S. (2008). Quantum-inspired evolutionary algorithm for continuous space optimization based on Bloch coordinates of qubits. Neurocomputing, 72(1–3), 581–585.

    Article  Google Scholar 

  29. Wang, Z., Zhang, H., Zhang, R., Xing, Y., & He, J. (2012). Quantum genetic algorithm based on multi-chain coding scheme. Application Research Computers, 29(26), 2061–2064.

    Google Scholar 

  30. Krishnasamy, G., Kulkarni, A. J., & Paramesran, R. (2014). A hybrid approach for data clustering based on modified cohort intelligence and K-means. Expert Systems with Applications, 41(13), 6009–6016.

    Article  Google Scholar 

  31. Bezdek, J. C. (1973). Cluster validity with fuzzy sets. Cybernetics and System, 3(3), 58–73.

    MathSciNet  MATH  Google Scholar 

  32. Bezdek, J. C. (1975). Mathematical models for systematic and taxonomy. In Proceedings of 8th international conference on numerical taxonomy, 1975 (pp. 143–166).

Download references

Acknowledgements

Funding was provided by National Natural Science Foundation of China (Grant No. 71501186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Lu, H., Xie, W. et al. An Improved Fuzzy C-Means Clustering Algorithm Based on Multi-chain Quantum Bee Colony Optimization. Wireless Pers Commun 102, 1421–1441 (2018). https://doi.org/10.1007/s11277-017-5203-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5203-2

Keywords

Navigation